Home
Class 14
MATHS
The diagonals AC and BD of a parallelogr...

The diagonals AC and BD of a parallelogram intersects at O. If `angleOAD=40^(@),angleOAB=20^(@)andangleCOD=65^(@)`, then evaluate the following,
`angleDBC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \angle DBC \) in the given parallelogram where the diagonals intersect at point O. We are provided with the following angles: - \( \angle OAD = 40^\circ \) - \( \angle OAB = 20^\circ \) - \( \angle COD = 65^\circ \) ### Step-by-Step Solution: 1. **Identify the Angles on a Straight Line:** Since \( AC \) is a straight line, we can use the property that the sum of angles on a straight line is \( 180^\circ \). Therefore, we can write: \[ \angle AOD + \angle COD = 180^\circ \] Given \( \angle COD = 65^\circ \), we can find \( \angle AOD \): \[ \angle AOD = 180^\circ - \angle COD = 180^\circ - 65^\circ = 115^\circ \] 2. **Use the Triangle Sum Property:** In triangle \( AOD \), the sum of the angles is \( 180^\circ \). We know: - \( \angle AOD = 115^\circ \) - \( \angle OAD = 40^\circ \) - Let \( \angle ODA = x \) Therefore, we can write: \[ \angle AOD + \angle OAD + \angle ODA = 180^\circ \] Substituting the known values: \[ 115^\circ + 40^\circ + x = 180^\circ \] Solving for \( x \): \[ 155^\circ + x = 180^\circ \implies x = 180^\circ - 155^\circ = 25^\circ \] Hence, \( \angle ODA = 25^\circ \). 3. **Identify Alternate Angles:** Since \( AD \) is parallel to \( BC \) in the parallelogram, we can use the property of alternate angles. The angle \( \angle ADB \) is equal to \( \angle DBC \): \[ \angle ADB = \angle DBC \] From triangle \( AOD \), we found that \( \angle ADB = \angle ODA = 25^\circ \). 4. **Conclusion:** Thus, we have: \[ \angle DBC = 25^\circ \] ### Final Answer: \[ \angle DBC = 25^\circ \]
Promotional Banner

Topper's Solved these Questions

  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7A|31 Videos
  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7B|6 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos
  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10B|10 Videos

Similar Questions

Explore conceptually related problems

The diagonals AC and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleACB

The diagonals Ac and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleABD

The diagonals Ac and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleBDC

The diagonals Ac and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleADC

The diagonals of a parallelogram ABCD intersect at O. If angleBOC=90^(@)andangleBDC=50^(@),"find"angleOAB.

The diagonals of rectangle ABCD intersect at O . If angleAOD=40^(@) , then find angleOAD

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If angleDAC=32^(@) and angleAOB=70^(@) , then angleDBC is equal to

The diagonals of a parallelogram ABCD intersect at O. If /_DBC=30^(@) and /_BDC=60^(@), then /_DAB is

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If angle DAC = 32^(@) and angle AOB =70^(@), " find " angle DBC.