Home
Class 14
MATHS
The diagonals Ac and BD of a parallelogr...

The diagonals Ac and BD of a parallelogram intersects at O. If `angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@)`, then evaluate the following,
`angleADC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \angle ADC \) in the parallelogram \( ABCD \) where the diagonals \( AC \) and \( BD \) intersect at point \( O \). We are given: - \( \angle OAD = 40^\circ \) - \( \angle OAB = 20^\circ \) - \( \angle COD = 75^\circ \) ### Step-by-Step Solution: 1. **Identify the Angles**: - We know that \( \angle OAD = 40^\circ \) and \( \angle OAB = 20^\circ \). - Therefore, we can find \( \angle BAD \): \[ \angle BAD = \angle OAD + \angle OAB = 40^\circ + 20^\circ = 60^\circ \] 2. **Using the Property of Parallel Lines**: - Since \( AB \parallel CD \) and \( AD \) is a transversal, we can use the property that the sum of the interior angles on the same side of the transversal is \( 180^\circ \). - Thus, we have: \[ \angle BAD + \angle ADC = 180^\circ \] 3. **Substituting the Known Value**: - We already calculated \( \angle BAD = 60^\circ \). Now we can substitute this value into the equation: \[ 60^\circ + \angle ADC = 180^\circ \] 4. **Solving for \( \angle ADC \)**: - Rearranging the equation gives: \[ \angle ADC = 180^\circ - 60^\circ = 120^\circ \] ### Final Answer: \[ \angle ADC = 120^\circ \]
Promotional Banner

Topper's Solved these Questions

  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7A|31 Videos
  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7B|6 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos
  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10B|10 Videos

Similar Questions

Explore conceptually related problems

The diagonals Ac and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleABD

The diagonals Ac and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleBDC

The diagonals AC and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=75^(@) , then evaluate the following, angleACB

The diagonals AC and BD of a parallelogram intersects at O. If angleOAD=40^(@),angleOAB=20^(@)andangleCOD=65^(@) , then evaluate the following, angleDBC

The diagonals of a parallelogram ABCD intersect at O. If angleBOC=90^(@)andangleBDC=50^(@),"find"angleOAB.

The diagonals of rectangle ABCD intersect at O . If angleAOD=40^(@) , then find angleOAD

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If angleDAC=32^(@) and angleAOB=70^(@) , then angleDBC is equal to

The diagonals of a parallelogram ABCD intersect at O. If /_DBC=30^(@) and /_BDC=60^(@), then /_DAB is

The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If angle DAC = 32^(@) and angle AOB =70^(@), " find " angle DBC.