Home
Class 12
MATHS
Prove that 1^3/(1!)+2^3/(2!)+3^3/(3!)+4^...

Prove that
`1^3/(1!)+2^3/(2!)+3^3/(3!)+4^3/(4!)+.....=5e`

A

5e

B

4e

C

3e

D

2e

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

Prove that 1^2/(1!)+2^2/(2!)+3^2/(3!)+4^2/(4!)+.....=2e

Prove that, (1.3)/(1!)+(2.4)/(2!)+(3.5)/(3!)+(4.6)/(4!)+.....=4e

Prove that, 1+(1+2)/(2!)+(1+2+3)/(3!)+(1+2+3+4)/(4!)+....=(3e)/2

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that (1-1/3+1/3^(2)-1/3^(3)+1/3^(4)-...oo)=3/4

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)

Prove that, 1/(1.2)-1/(2.3)+1/(3.4)-.....=2log_e2-1

Prove that: (2^((1)/(2))x3^((1)/(3))x4^((1)/(4)))/(10^(-(1)/(5))x5^((3)/(5)))-:(3^((4)/(3))x5^(-(7)/(5)))/(4^(-(3)/(3))x6)=10

Prove that: ,,3^((1)/(2))xx3^((1)/(4))xx3^((1)/(8))xx...=3