Home
Class 12
MATHS
If (1)/(e^(3x))(e^(x)+e^(5x))=a^(0)+a(1)...

If `(1)/(e^(3x))(e^(x)+e^(5x))=a^(0)+a_(1)x+a_(2)x^(2)+ . . .,` then `2a_(1)+2^(3)a_(3)+2^(5)a_5+ . . . ` is equal to

A

e

B

`e^(-1)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \frac{1}{e^{3x}(e^{x} + e^{5x})} \] We can simplify this expression. First, we rewrite it: \[ \frac{1}{e^{3x}(e^{x} + e^{5x})} = \frac{1}{e^{3x}} \cdot \frac{1}{e^{x} + e^{5x}} \] Next, we factor out \( e^{x} \) from the denominator: \[ e^{x} + e^{5x} = e^{x}(1 + e^{4x}) \] Thus, we can rewrite the expression as: \[ \frac{1}{e^{3x}} \cdot \frac{1}{e^{x}(1 + e^{4x})} = \frac{1}{e^{4x}(1 + e^{4x})} \] Now, we can further simplify this: \[ \frac{1}{e^{4x}(1 + e^{4x})} = \frac{1}{e^{4x}} \cdot \frac{1}{1 + e^{4x}} \] Now, we can express this in terms of a power series. The term \( \frac{1}{1 + e^{4x}} \) can be expanded using the geometric series formula: \[ \frac{1}{1 + e^{4x}} = \sum_{n=0}^{\infty} (-1)^n (e^{4x})^n = \sum_{n=0}^{\infty} (-1)^n e^{4nx} \] Therefore, we have: \[ \frac{1}{e^{4x}(1 + e^{4x})} = e^{-4x} \sum_{n=0}^{\infty} (-1)^n e^{4nx} = \sum_{n=0}^{\infty} (-1)^n e^{(4n - 4)x} \] Now, we want to find the coefficients \( a_n \) in the series expansion: \[ \sum_{n=0}^{\infty} a_n x^n \] From the above expression, we can see that \( a_n \) corresponds to the coefficients of \( x^n \) in the expansion. Specifically, we need to find \( 2a_1 + 2^3 a_3 + 2^5 a_5 + \ldots \). To find \( a_n \), we note that \( a_n \) is non-zero only for \( n = 4k \) (where \( k \) is a non-negative integer), and the coefficients alternate in sign. Thus we have: \[ a_{4k} = (-1)^k \] Now we compute \( 2a_1 + 2^3 a_3 + 2^5 a_5 + \ldots \): 1. For \( n = 1 \): \( a_1 = 0 \) 2. For \( n = 3 \): \( a_3 = 0 \) 3. For \( n = 5 \): \( a_5 = 0 \) 4. Continuing this, we find that \( a_n = 0 \) for all odd \( n \). Thus: \[ 2a_1 + 2^3 a_3 + 2^5 a_5 + \ldots = 0 \] Therefore, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

(1)/(e^(3x))(e^(x)+e^(5x))=a_(0)+a_(1)x+a_(2)x^(2)+.......rArr2a_(1)+2^(3)a_(3)+2^(5)a_(5)+......=

If e^(e^(x)) = a_(0) +a_(1)x +a_(2)x^(2)+... ,then find the value of a_ (0)

Let (1+x+2x^(2))^(20) = a_(0)+a_(1)x+a_(2)x^(2)+...+a_(40)x^(40) then a_(1)+a_(3)+a_(5)+...+a_(39) is equal to

(1+x+x^(2)+x^(3))^(5)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(15)x^(15), then a_(10) equals to

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+……+a_(20)x^(20) , then a_(1) equals :