Home
Class 12
MATHS
1/2(1/2+1/3)-1/4(1)/(2^(2))+(1)/(3^(2))+...

`1/2(1/2+1/3)-1/4(1)/(2^(2))+(1)/(3^(2))+1/6(1)/(2^(3))+(1)/(3^(3))+…infty` is equal to

A

`log_(e)2`

B

`log_(e)3`

C

`2log_(e)2`

D

`1/2log_(e)2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

The sum of the infinite series (1)/(2) ((1)/(3) + (1)/(4)) - (1)/(4)((1)/(3^(2)) + (1)/(4^(2))) + (1)/(6) ((1)/(3^(3)) + (1)/(4^(3))) - ...is equal to

If S=(1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^(2)))+(1)/(6)((1)/(2^(3))+(1)/(3^(3))) then S=

Sum of the series (1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^(2)))+(1)/(6)((1)/(2^(3))+(1)/(3^(3)))+...oo

(1)/((2(1)/(3)))+(1)/((1(3)/(4))) is equal to :

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

(2)/(1!)+(4)/(3!)+(6)/(5!)+….infty is equal to

(2)/(3) -((1)/(2) -(1)/(3))/((1)/(2)+(1)/(3))xx3(1)/(3)+(5)/(6) =?