Home
Class 12
MATHS
The sum of the series log(9)3+log(27)3-l...

The sum of the series `log_(9)3+log_(27)3-log_(81)3+log_(243)3- . . .` is

A

`1-log_(e)2`

B

`1+log_(e)2`

C

`log_(e)2`

D

`log_(e)3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( \log_{9}3 + \log_{27}3 - \log_{81}3 + \log_{243}3 - \ldots \), we can follow these steps: ### Step 1: Rewrite each term using the change of base formula We can express each logarithm in the series using the change of base formula: \[ \log_{a}b = \frac{\log b}{\log a} \] Thus, we have: - \( \log_{9}3 = \frac{\log 3}{\log 9} \) - \( \log_{27}3 = \frac{\log 3}{\log 27} \) - \( \log_{81}3 = \frac{\log 3}{\log 81} \) - \( \log_{243}3 = \frac{\log 3}{\log 243} \) ### Step 2: Simplify each logarithm Next, we can simplify each logarithm: - \( \log 9 = \log 3^2 = 2 \log 3 \) so \( \log_{9}3 = \frac{\log 3}{2 \log 3} = \frac{1}{2} \) - \( \log 27 = \log 3^3 = 3 \log 3 \) so \( \log_{27}3 = \frac{\log 3}{3 \log 3} = \frac{1}{3} \) - \( \log 81 = \log 3^4 = 4 \log 3 \) so \( \log_{81}3 = \frac{\log 3}{4 \log 3} = \frac{1}{4} \) - \( \log 243 = \log 3^5 = 5 \log 3 \) so \( \log_{243}3 = \frac{\log 3}{5 \log 3} = \frac{1}{5} \) ### Step 3: Write the series with simplified terms Now we can rewrite the series: \[ \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots \] ### Step 4: Identify the pattern The series can be expressed as: \[ S = \left( \frac{1}{2} + \frac{1}{3} \right) + \left( -\frac{1}{4} + \frac{1}{5} \right) + \left( -\frac{1}{6} + \frac{1}{7} \right) + \ldots \] This series alternates in sign and can be grouped in pairs. ### Step 5: Sum the series The series can be recognized as a logarithmic series. The sum can be derived from the known series: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] For \( x = 1 \): \[ \log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \] Thus, the sum of our series is: \[ S = \log(2) \] ### Step 6: Final result Since the base of the logarithm was not specified, we assume it is base \( 10 \) or natural logarithm, hence: \[ S = \log_{10}(2) \text{ or } S = \ln(2) \] ### Conclusion The sum of the series \( \log_{9}3 + \log_{27}3 - \log_{81}3 + \log_{243}3 - \ldots \) is \( \log(2) \). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

log_(x)log_(2)log_(3)81

The sum of the series log_(a)b+log_(a^(2))b^(2)+log_(a^(3))b^(3)+....log_(a^(n))b^(n)

log_(2)[log_(2) {log_(2)(log_(3) 81)}] =

The sum of the series log_(e)(3)+((log_(e)(3))^(3))/(3!)+((log_(e)(3))^(5))/(5!)+...+

Prove that log_(4)log_(2){log_(2)(log_(3)81)}]=0

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

the value of log_(3)(log_(2)(log_(sqrt(3))81))

What is the value of log_(2)(log_(3)81) ?

Find the value of log_(2)[log_(2){log_(3)(log_(3)27^(3))}]

The value of log_(e) e- log_(9) e + log_(27) e- log_(81) e+…infty is