Home
Class 12
MATHS
(x-y)/(x)+1/2((x-y)/(x))^(2)+1/3((x-y)/(...

`(x-y)/(x)+1/2((x-y)/(x))^(2)+1/3((x-y)/(x))^(3)+. . . .` is equal to

A

`log_(e)(x-y)`

B

`log_(e)(x+y)`

C

`log_(e)((x)/(y))`

D

`log_(e)xy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{x-y}{x} + \frac{1}{2} \left(\frac{x-y}{x}\right)^2 + \frac{1}{3} \left(\frac{x-y}{x}\right)^3 + \ldots \] we can recognize that this series resembles the Taylor series expansion for the logarithmic function. ### Step 1: Identify the series The series can be identified as: \[ \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x-y}{x}\right)^n \] This is the Taylor series expansion for \(-\log(1 - z)\) where \(z = \frac{x-y}{x}\). ### Step 2: Apply the logarithmic series formula From the logarithmic series, we know that: \[ -\log(1 - z) = \sum_{n=1}^{\infty} \frac{z^n}{n} \] Thus, substituting \(z = \frac{x-y}{x}\): \[ -\log\left(1 - \frac{x-y}{x}\right) = -\log\left(\frac{y}{x}\right) \] ### Step 3: Simplify the logarithmic expression Now, we simplify: \[ -\log\left(1 - \frac{x-y}{x}\right) = -\log\left(\frac{y}{x}\right) = \log\left(\frac{x}{y}\right) \] ### Conclusion Therefore, the value of the original series is: \[ \log\left(\frac{x}{y}\right) \] ### Final Answer The expression \[ \frac{x-y}{x} + \frac{1}{2} \left(\frac{x-y}{x}\right)^2 + \frac{1}{3} \left(\frac{x-y}{x}\right)^3 + \ldots \] is equal to \[ \log\left(\frac{x}{y}\right) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

If x and y are of same sign,then the value of (x^(3))/(2)cos ec^(2)((1)/(2)(tan^(-1)x)/(y))+(y^(3))/(2)sec^(2)((1)/(2)(tan^(-1)y)/(x)) is equal to (x-y)(x^(2)+y^(2)) (b) (x+y)(x^(2)-y^(2))(x+y)(x^(2)+y^(2))*(d)(x-y)(x^(2)-y^(2))

If y=1+(1)/(x-1)+(2x)/((x-1)(x-2))+(3x^(2))/((x-1)(x-2)(x-3)) , then the value of -9y'(4) is equal to

(6)/(x+y)=(7)/(x-y)+3(1)/(2(x+y))=(1)/(3(x-y))

The expression (x+y)/(x-y)-:((x+y)^(2))/((x^(2)-y^(2))) is equal to -1( b) x-y( c) 1 (d) x+y is equal

if (x)/(y)=(3)/(2) then (x+y)/(x-y) is equal to:

If x^(2)+y^(2)=1 and P=(3x-4x^(3))^(2)+(3y-4y^(3))^(2) then P is equal to

If (x)/(2)+(y)/(3)=4 "and" (2)/(x)+(3)/(y)=1 then what is x+y equal to ?

If y=f(x) is solution of differentiable equation (dy)/(dx)=y/x((1-3x^(2)y^(3)))/((2x^(2)y^(3)+1)) , then ( f(x).x)^(3) is equal to