Home
Class 12
MATHS
log(e)3-(log(e)9)/(2^(2))+(log(e)27)/(3^...

`log_(e)3-(log_(e)9)/(2^(2))+(log_(e)27)/(3^(2))-(log_(e)81)/(4^(2))+. . . .` is equal to

A

`(log_(e)3)(log_(e)2)`

B

`log_(e)3`

C

`log_(e)2`

D

`(log_(e)5)/(log_(e)3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_e 3 - \frac{\log_e 9}{2^2} + \frac{\log_e 27}{3^2} - \frac{\log_e 81}{4^2} + \ldots \), we will break it down step by step. ### Step 1: Rewrite the logarithmic terms We start by rewriting the logarithmic terms in a more manageable form: \[ \log_e 9 = \log_e (3^2) = 2 \log_e 3 \] \[ \log_e 27 = \log_e (3^3) = 3 \log_e 3 \] \[ \log_e 81 = \log_e (3^4) = 4 \log_e 3 \] Now we can substitute these back into the original expression: \[ \log_e 3 - \frac{2 \log_e 3}{2^2} + \frac{3 \log_e 3}{3^2} - \frac{4 \log_e 3}{4^2} + \ldots \] ### Step 2: Factor out \( \log_e 3 \) Next, we can factor out \( \log_e 3 \) from the entire expression: \[ \log_e 3 \left( 1 - \frac{2}{4} + \frac{3}{9} - \frac{4}{16} + \ldots \right) \] This simplifies to: \[ \log_e 3 \left( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \right) \] ### Step 3: Identify the series The series inside the parentheses is: \[ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \] This is the alternating series for the natural logarithm: \[ \log(1 + x) \text{ where } x = 1 \] Thus, we have: \[ \log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \] ### Step 4: Combine results Substituting back, we find: \[ \log_e 3 \cdot \log_e 2 \] ### Final Answer Thus, the expression simplifies to: \[ \log_e 3 \cdot \log_e 2 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

log_(e^(2))^(a^(b))*log_(a^(3))^(b^(c))log_(b^(4))^(e^(a))

If agt0 and x in R , then 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)a)^(2)+(x^(3))/(3!)(log_(e)a)^(3)+….infty is equal to

(d)/(dx)[log_(e)e^(sin(x^(2)))] is equal to

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

int_(0)^(16)(log_(e )x^(2))/(log_(e )x^(2)+log_(e )(x^(2)-44x+484))dx is equal to

1+((log_(e)n)^(2))/(2!)+((log_(e)n)^(4))/(4!)+...=

log_(3)x+3log_(e)x+2tanx

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to