Home
Class 12
MATHS
The value of 1/3+1/(3*3^(3))+1/(5*3^(5))...

The value of `1/3+1/(3*3^(3))+1/(5*3^(5))+(1)/(7*3^(7))+. . .` is

A

`1/2log_(e)2`

B

`log_(e)2`

C

`log_(e)3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{1}{3} + \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} + \frac{1}{7 \cdot 3^7} + \ldots \), we can express it in a more manageable form and utilize properties of logarithms. ### Step 1: Rewrite the series We can rewrite the series as: \[ S = \sum_{n=1}^{\infty} \frac{1}{(2n-1) \cdot 3^{2n-1}} \] This means we are summing over odd integers in the denominator while raising 3 to the power of the odd integers. ### Step 2: Relate to logarithmic series We know that: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] and \[ \log(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \ldots\right) \] By subtracting these two series, we can isolate the odd powers of \( x \). ### Step 3: Combine logarithmic identities We can express: \[ \log(1+x) - \log(1-x) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right) \] This means: \[ \log\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots\right) \] ### Step 4: Substitute \( x = \frac{1}{3} \) Now, substituting \( x = \frac{1}{3} \): \[ \log\left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right) = \log\left(\frac{\frac{4}{3}}{\frac{2}{3}}\right) = \log(2) \] ### Step 5: Simplify the equation This gives us: \[ \log(2) = 2\left(\frac{1}{3} + \frac{1}{3^3 \cdot 3} + \frac{1}{5 \cdot 3^5} + \ldots\right) \] Thus, we can express our series \( S \) as: \[ S = \frac{1}{2} \log(2) \] ### Final Result The value of the series \( S \) is: \[ S = \frac{1}{2} \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

(5)/(7)+(1)/(3)

(1)/(1*3*5)+(1)/(3*5*7)+

The value of ((2/5)^(3)xx(1/7)^(3))/((2/5)^(2)xx(1/7)^(4)) is

(1)/(1.3.5)+(1)/(3.5.7)+

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

(1)/(1.3.5)+(1)/(3.5.7)+...

Find the value of 1^(3) + 3^(3) + 5^(3) + 7^(3) + …….. + 29^(3)

What is the value of [(2.3)^(3) – (1.7)^(3)] / [(2.3)^(2) + (2.3 xx 1.7) + (1.7)^(2)] ?

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is