Home
Class 12
MATHS
If a = log(2)3, b = log(2) 5 and c = log...

If `a = log_(2)3, b = log_(2) 5` and `c = log_(7)2`, then `log_(140) 63` in terms of a, b, c is

A

`(2ac+1)/(2c+abc+1)`

B

`(2ac+1)/(2a+c+a)`

C

`(2ac+1)/(2x+ab+a)`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • DIFFERENTIAL EQUATIONS

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|17 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos

Similar Questions

Explore conceptually related problems

If a=log_(4)5 and b=log_(5)6, then log_(2)3=

If a=log_(4)5 and b=log_(5)6 then log_(2)3 is

If log_(2)3=a,log_(3)5=b,log_(7)2=c find log_(140)63 in terms of a,b,c.

If log_(a)3=2 and log_(b)8=3, then log_(a)b is

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to

log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to