Home
Class 12
MATHS
If f(x)=|{:(0,x^2-sinx,cosx-2),(sinx-x^2...

If `f(x)=|{:(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0):}|` then `intf(x)` dx is equal to

A

`x^3/3-x^2sinx+sin2x+C`

B

`x^3/3-x^2sinx-cos2x+C`

C

`x^3/3-x^2cosx-cos2x+C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) given by the determinant: \[ f(x) = \left| \begin{array}{ccc} 0 & x^2 - \sin x & \cos x - 2 \\ \sin x - x^2 & 0 & 1 - 2x \\ 2 - \cos x & 2x - 1 & 0 \end{array} \right| \] ### Step 1: Expand the Determinant We will expand the determinant using the first row. The first row has a zero, which simplifies our calculation: \[ f(x) = 0 \cdot \text{(minor)} - (x^2 - \sin x) \cdot \left| \begin{array}{cc} \sin x - x^2 & 1 - 2x \\ 2 - \cos x & 0 \end{array} \right| + (\cos x - 2) \cdot \left| \begin{array}{cc} \sin x - x^2 & 0 \\ 2 - \cos x & 2x - 1 \end{array} \right| \] ### Step 2: Calculate the 2x2 Determinants 1. For the first determinant: \[ \left| \begin{array}{cc} \sin x - x^2 & 1 - 2x \\ 2 - \cos x & 0 \end{array} \right| = 0 \cdot (\sin x - x^2) - (1 - 2x)(2 - \cos x) = -(1 - 2x)(2 - \cos x) \] 2. For the second determinant: \[ \left| \begin{array}{cc} \sin x - x^2 & 0 \\ 2 - \cos x & 2x - 1 \end{array} \right| = (\sin x - x^2)(2x - 1) - 0 = (\sin x - x^2)(2x - 1) \] ### Step 3: Substitute Back into \( f(x) \) Now substituting these back into the expression for \( f(x) \): \[ f(x) = -(x^2 - \sin x)(1 - 2x)(2 - \cos x) + (\cos x - 2)(\sin x - x^2)(2x - 1) \] ### Step 4: Simplify \( f(x) \) Notice that both terms involve similar expressions. However, we can observe that if we expand and simplify, we will find that they cancel each other out. After careful simplification, we find that: \[ f(x) = 0 \] ### Step 5: Integrate \( f(x) \) Now we need to integrate \( f(x) \): \[ \int f(x) \, dx = \int 0 \, dx = C \] where \( C \) is the constant of integration. ### Final Answer Thus, the value of \( \int f(x) \, dx \) is: \[ C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

Given f(x) =|{:(0,x^(2)-sinx,cosx-2),(sinx-x^(2),0,1-2x),(2-cosx,2x-1,0):}| intf(x) dx is equal to

If f(x)=|{:(x,sinx,cosx),(x^2,tanx,x^3),(2x,sin2x,5x):}| then lim_(x to 0)(f'(x))/x is equal to

If f(x)=[(sinx,cosecx,tanx),(secx,xsinx,xtanx),(x^2-1,cosx,x^2+1)] then int_(-a) ^ a f(x) dx equals

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

If A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,0,1):}] =f(x), then A^(-1) is equal to

If S={x epsilon [0,2pi]:|(0,cosx,-sinx),(sinx,0,cosx),(cosx,sinx,0)|=0} then sum_(xepsilonS)tan((pi)/3+x) is equal to

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by