Home
Class 12
MATHS
int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx i...

`int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx` is equal to

A

`sin2X+C`

B

`-1/2sin2x+C`

C

`1/2sin2x+C`

D

`-sin2x+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

If int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=asin2x+C , then a= -1//2 (b) 1//2 (c) -1 (d) 1

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .

int 1/(sin^2x cos^2x )dx is equal to:

int(1)/(sin^(2)x.cos^(2)x)dx is equal to

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)dx=A sin 2x+B, then A =