Home
Class 12
MATHS
int(x^(2)+cos^(2)x)/(x^(2)+1."cosec"^(2)...

`int(x^(2)+cos^(2)x)/(x^(2)+1."cosec"^(2)xdx` is equal to

A

`cotx+cot^(-1)x+C`

B

`-e^("In "tan^(-1)x)-cotx+C`

C

`C-cotx+cot^(-1)x`

D

`-tan^(-1)x-(cosecx)/(secx)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

int x^(2)cos^(2)xdx

int((x^(2)+cos^(2)x)/(1+x^(2)))cos ec^(2)xdx=

int((x^(2)+cos^(2)x)/(1+x^(2)))csc^(2)xdx

int x^(2)cos^(3)xdx

int cosec^(2)xdx

int(1-cosx)cosec^(2)x dx is equal to

int sec^(4)x cosec^(2)x dx is equal to

int e^(x)cos^(2)xdx

int sin^(2)x csc^(2)xdx