Home
Class 12
MATHS
inte^(3logx)(x^4+1)^(-1)dx equal to...

`inte^(3logx)(x^4+1)^(-1)dx` equal to

A

`log(x^4+1)+C`

B

`1/4log(x^4+1)+C`

C

`-log(x^4+1)+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{3 \log x} (x^4 + 1)^{-1} \, dx \), we will follow these steps: ### Step 1: Simplify \( e^{3 \log x} \) Using the property of logarithms, we know that \( e^{\log a} = a \). Therefore, we can rewrite \( e^{3 \log x} \) as: \[ e^{3 \log x} = x^3 \] ### Step 2: Rewrite the integral Substituting \( e^{3 \log x} \) into the integral, we have: \[ \int x^3 (x^4 + 1)^{-1} \, dx \] ### Step 3: Use substitution Let \( t = x^4 + 1 \). Then, we differentiate both sides: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] ### Step 4: Substitute \( dx \) in the integral Now, substituting \( dx \) into the integral gives: \[ \int x^3 \cdot \frac{1}{t} \cdot \frac{dt}{4x^3} = \int \frac{1}{4t} \, dt \] ### Step 5: Integrate The integral of \( \frac{1}{4t} \) is: \[ \frac{1}{4} \ln |t| + C \] ### Step 6: Substitute back for \( t \) Substituting back \( t = x^4 + 1 \), we get: \[ \frac{1}{4} \ln |x^4 + 1| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int e^{3 \log x} (x^4 + 1)^{-1} \, dx = \frac{1}{4} \ln (x^4 + 1) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int(logx)/(x+1)^2dx=

int32x^(3)(logx)^(2) dx is equal ot

Evaluate inte^(3logx)(x^(4)+1)^(-1)dx

int1/x^(3)[logx^(x)]^(2)dx=

What is int_(a)^(b) (logx)/(x) dx equal to ?

int(logx)/(x^3)dx=

Evaluate: inte^(3logx)(1+x^4)^-1dx

int(logx-1)/(x)dx

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(sqrt(x^(2)+1)[log(x^(2)+1)-2logx])/(x^(4)) dx is equal to