Home
Class 12
MATHS
If int2^x/(sqrt(1-4^x))dx=ksin^(-1)(2^x)...

If `int2^x/(sqrt(1-4^x))dx=ksin^(-1)(2^x)+C`, then k is equal to

A

log2

B

`1/2log2`

C

`1/2`

D

`1/(log2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(2))+c

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

int2^x/sqrt(1-4^x) dx =lamda sin^-1 2^x+c then lamda equals to

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

int(2x)/(sqrt(1-x^(2)-x^(4)))dx=

int(2x)/(sqrt(1-x^(2)-x^(4)))dx

int(x^(49)tan^(-1)(x^(50)))/((1+x^(100)))dx=k[tan^(-1)(x^(50))]^(2)+C, , then k is equal to