Home
Class 12
MATHS
int(X+root3(x^2)+root6(x))/(X(1+root3x))...

`int(X+root3(x^2)+root6(x))/(X(1+root3x))dx` is equal to

A

`3/2x^(2//3)+6tan^(-1)x^(1//6)+C`

B

`3/2x^(2//3)-6tan^(-1)x^(1//6)+C`

C

`-3/2x^(2//3)+6tan^(-1)x^(1//6)+C`

D

`1/2x^(2//3)-6tan^(-1)x^(1//6)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})} \, dx, \] we will break it down step by step. ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. The integral can be expressed as: \[ \int \frac{x + x^{2/3} + x^{1/6}}{x(1 + x^{1/3})} \, dx. \] ### Step 2: Simplify the Numerator We can simplify the numerator by factoring out \(x\): \[ \int \frac{1 + x^{-1/3} + x^{-5/6}}{1 + x^{1/3}} \, dx. \] ### Step 3: Separate the Integral Now, we can separate the integral into two parts: \[ \int \frac{1 + x^{-1/3}}{1 + x^{1/3}} \, dx + \int \frac{x^{-5/6}}{1 + x^{1/3}} \, dx. \] ### Step 4: Solve the First Integral For the first integral, we can use substitution. Let \(u = 1 + x^{1/3}\), then \(du = \frac{1}{3} x^{-2/3} \, dx\) or \(dx = 3u^{2/3} \, du\). The limits change accordingly, and we can rewrite the integral: \[ \int \frac{1 + x^{-1/3}}{u} \cdot 3u^{2/3} \, du. \] ### Step 5: Solve the Second Integral For the second integral, we can use the same substitution \(u = 1 + x^{1/3}\): \[ \int \frac{x^{-5/6}}{u} \, dx. \] ### Step 6: Combine Results After evaluating both integrals, we combine the results. The first integral will yield a logarithmic function, and the second integral will yield an arctangent function. ### Step 7: Final Result Putting everything together, we get: \[ \frac{3}{2} x^{2/3} + 6 \tan^{-1}(x^{1/6}) + C, \] where \(C\) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int(1+x)/(1+root(3)(x))dx is equal to

int(x+root(3)(x^(2))+root(6)(x))/(x(1+root(3)(x)))dx is equal to (i)(3)/(2)x(1+root(3)(x))(3)/(2)x^((2)/(3))+6tan^(-1)x^(6)+C( iii) (3)/(2)x^((2)/(3))+6tan^(-1)x^((1)/(6))+C( iv) (2)/(3)x^((2)/(3))+5tan^(-1)x^(6)+C

int root 3 (x) root 7 (1+ root3 (x ^(4))) dx is equal to

int root(3)(x)dx

int(root3(x))(root5(1+root3(x^(4))))dx is equal to

int(x+root(3)(x^(2))+root(6)(x))dx is equal to

int root(3)(x^(2))dx

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int(root(3)(x))(root(5)(1+root(3)(x^(4))))dx