Home
Class 12
MATHS
Let x^2 ne npi-1, n in N, then intxsqrt(...

Let `x^2 ne npi-1, n in N`, then `intxsqrt((2sin(x^2+1)-sin2(x^2+1))/(2sin(x^2+1)+sin2(x^2+1)))dx` equals

A

`log|1/2sec(x^2+1)|+C`

B

`log|sec(1/2(x^2+1))|+C`

C

`1/2log|sec(x^2+1)|+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int x \sqrt{\frac{2 \sin(x^2 + 1) - \sin(2(x^2 + 1))}{2 \sin(x^2 + 1) + \sin(2(x^2 + 1))}} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = x^2 + 1 \). Then, we differentiate both sides to find \( dt \): \[ dt = 2x \, dx \implies x \, dx = \frac{1}{2} dt. \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ I = \int x \sqrt{\frac{2 \sin(t) - \sin(2t)}{2 \sin(t) + \sin(2t)}} \, dx = \int \sqrt{\frac{2 \sin(t) - \sin(2t)}{2 \sin(t) + \sin(2t)}} \cdot \frac{1}{2} dt. \] ### Step 3: Simplify the Expression Using the identity \( \sin(2t) = 2 \sin(t) \cos(t) \), we can rewrite the integral: \[ I = \frac{1}{2} \int \sqrt{\frac{2 \sin(t) - 2 \sin(t) \cos(t)}{2 \sin(t) + 2 \sin(t) \cos(t)}} \, dt. \] Factoring out \( 2 \sin(t) \) from both the numerator and denominator gives: \[ I = \frac{1}{2} \int \sqrt{\frac{2 \sin(t)(1 - \cos(t))}{2 \sin(t)(1 + \cos(t))}} \, dt = \frac{1}{2} \int \sqrt{\frac{1 - \cos(t)}{1 + \cos(t)}} \, dt. \] ### Step 4: Use Trigonometric Identities Using the identity \( 1 - \cos(t) = 2 \sin^2\left(\frac{t}{2}\right) \) and \( 1 + \cos(t) = 2 \cos^2\left(\frac{t}{2}\right) \), we can simplify further: \[ I = \frac{1}{2} \int \sqrt{\frac{2 \sin^2\left(\frac{t}{2}\right)}{2 \cos^2\left(\frac{t}{2}\right)}} \, dt = \frac{1}{2} \int \tan\left(\frac{t}{2}\right) \, dt. \] ### Step 5: Integrate The integral of \( \tan\left(\frac{t}{2}\right) \) is: \[ \int \tan\left(\frac{t}{2}\right) \, dt = -\log\left(\cos\left(\frac{t}{2}\right)\right) + C. \] Thus, \[ I = \frac{1}{2} \left(-\log\left(\cos\left(\frac{t}{2}\right)\right) + C\right). \] ### Step 6: Back Substitute Recalling that \( t = x^2 + 1 \), we substitute back: \[ I = -\frac{1}{2} \log\left(\cos\left(\frac{x^2 + 1}{2}\right)\right) + C. \] ### Final Answer Thus, the integral evaluates to: \[ I = -\frac{1}{2} \log\left(\cos\left(\frac{x^2 + 1}{2}\right)\right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

For x ^ 2 ne n pi + 1, n in N ( the set of natural numbers ), the integral int x sqrt ((2 sin (x ^ 2 - 1 ) - sin 2 (x ^ 2 - 1 ))/(2 sin ( x ^ 2 - 1 ) + sin2 (x ^ 2 - 1 ) )) dx is

int(1)/(sin2x-sin^(2)x)dx=

int(1-sin^(2)x)/(sin^(2)x)dx

The integral int((sin2x+cos^(2)x)dx)/(1+sin^(2)x(sin2x-cos^(2)x)) is equal to

((1+sin2x)/(x+sin^(2)x))dx

int(sin (x/2))/(1+sin (x/2))dx=

int(sin2x )/(1+sin^(2)x)dx