Home
Class 12
MATHS
int((x+3)e^x)/((x+4)^2)dx is equal to...

`int((x+3)e^x)/((x+4)^2)dx` is equal to

A

`1/((x+4)^2)+C`

B

`e^x/((x+4)^2)+C`

C

`e^x/(x+4)+C`

D

`e^x/(x+3)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int(x e^(x))/((1+x)^(2)) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int x^(3)e^(x^(2))dx is equal to

int((x+2)/(x+4))^(2)e^(x)dx is equal to

int e^(x)dx is equal to

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int e^(x)""((x-1)/(x^(2)))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c