Home
Class 12
MATHS
inte^(tan^(-1)x)((1+x+x^2)/(1+x^2))dx is...

`inte^(tan^(-1)x)((1+x+x^2)/(1+x^2))dx` is equal to

A

`xe^(tan^(-1)x)+C`

B

`x^2e^(tan^(-1)x)+C`

C

`1/xe^(tan^(-1)x)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int e^(tan^(-1)x)((1+x+x^(2))/(1+x^(2)))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

int e^(tan^(-1)x)*((1+x+x^(2))/(1+x^(2)))dx

int e^(tan^(-1)x)[(1+x+x^(2))/(1+x^(2))]dx

int(e^(tan^(-1)x))/((1+x^(2))^(2))dx

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to