Home
Class 12
MATHS
If int[In(Inx)+1/((Inx)^2)]dx=x[f(x)-g(x...

If `int[In(Inx)+1/((Inx)^2)]dx=x[f(x)-g(x)]=1/(Inx)`

A

`f(x)=In(Inx),g(x)=1/(In(x))`

B

`f(x)=Inx,g(x)=1/(Inx)`

C

`f(x)=1/(Inx),g(x)=In(Inx)`

D

`f(x)=Inx,g(x)=In(Inx)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int x log(1+(1)/(x))dx=f(x)log(x+1)+g(x)x^(2)+dx+C, then

int{f(x)+-g(x)}dx=int f(x)dx+-int g(x)dx

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

If int(x+sin x)/(1+cos x)dx=f(x)tan g(x)+C , then, f(x)=

Suppose that the function f,g,f', and g' are continuous over [0,1],g(x)!=0 for x in[0,1],f(0)=0,g(0)=pi,f(1)=(2015)/(2),g(1)=1 The value of int_(0)^(1)(f(x)g'(x)(g^(2)(x)-1)+f'(x)-g(x)(g^(2)(x)+1))/(g^(2)(x))dx is equal to

If int f(x)dx=g(x) then int f^(-1)(x)dx is