Home
Class 12
MATHS
int(x^2-1)/(x^4+x^2+1)dx is equal to...

`int(x^2-1)/(x^4+x^2+1)`dx is equal to

A

`1/2log((x^2+x+1)/(x^2-x+1))+C`

B

`1/2log((x^2-x-1)/(x^2+x+1))+C`

C

`log((x^2-x+1)/(x^2+x+1))+C`

D

`1/2log((x^2-x+1)/(x^2+x+1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the given integral: \[ I = \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx \] ### Step 2: Factor the Denominator Notice that the denominator can be rewritten: \[ x^4 + x^2 + 1 = (x^2 + 1)^2 - x^2 = (x^2 - x + 1)(x^2 + x + 1) \] However, for our purpose, we will not factor it just yet. ### Step 3: Split the Numerator We can separate the integral into two parts: \[ I = \int \frac{x^2}{x^4 + x^2 + 1} \, dx - \int \frac{1}{x^4 + x^2 + 1} \, dx \] ### Step 4: Simplify the First Integral For the first integral, we can rewrite: \[ \int \frac{x^2}{x^4 + x^2 + 1} \, dx = \int \frac{1}{x^2 + 1 + \frac{1}{x^2}} \, dx \] Let \( u = x + \frac{1}{x} \). Then, \( du = (1 - \frac{1}{x^2}) \, dx \). ### Step 5: Change of Variables Using the substitution \( t = x + \frac{1}{x} \): \[ dx = \frac{1}{1 - \frac{1}{x^2}} \, dt = \frac{1}{1 - \frac{1}{(t^2 - 2)}} \, dt \] ### Step 6: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ I = \int \frac{1}{t^2 - 1} \, dt \] ### Step 7: Solve the Integral The integral \( \int \frac{1}{t^2 - 1} \, dt \) can be solved using partial fractions: \[ \frac{1}{t^2 - 1} = \frac{1}{(t-1)(t+1)} = \frac{1/2}{t-1} - \frac{1/2}{t+1} \] Thus, \[ I = \frac{1}{2} \ln |t - 1| - \frac{1}{2} \ln |t + 1| + C \] ### Step 8: Substitute Back Substituting back for \( t \): \[ I = \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| + C \] And since \( t = x + \frac{1}{x} \): \[ I = \frac{1}{2} \ln \left| \frac{x + \frac{1}{x} - 1}{x + \frac{1}{x} + 1} \right| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx = \frac{1}{2} \ln \left| \frac{x^2 - x + 1}{x^2 + x + 1} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(x^(2))/(x(x^(2)-1))dx is equal to

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

int(sqrt(x^2+1))/(x^(4))dx" is equal to "

int(sqrt(x^(2)+1))/(x^(4))dx is equal to

int(1)/(sqrt(9x-4x^(2)))dx is equal to

int(1)/(x^(2)+4x+13)dx is equal to

int(x^(4))/(x^(2)+1)dx is equal to