Home
Class 12
MATHS
If inte^x(1+x).sec^2(xe^x)dx=f(x)+C, the...

If `inte^x(1+x).sec^2(xe^x)dx=f(x)+C`, then f(x) is equal to

A

`cos(xe^x)`

B

`sin(xe^x)`

C

`2tan^(-1)(x)`

D

`tan(xe^x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x (1+x) \sec^2(x e^x) \, dx = f(x) + C \), we will follow these steps: ### Step 1: Substitution Let \( t = x e^x \). We will differentiate this with respect to \( x \): \[ \frac{dt}{dx} = e^x + x e^x = e^x(1+x) \] Thus, we can express \( dt \) as: \[ dt = e^x(1+x) \, dx \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( t \): \[ \int e^x (1+x) \sec^2(x e^x) \, dx = \int \sec^2(t) \, dt \] ### Step 3: Integrate The integral of \( \sec^2(t) \) is: \[ \int \sec^2(t) \, dt = \tan(t) + C \] ### Step 4: Back Substitute Now we substitute back \( t = x e^x \): \[ \tan(t) = \tan(x e^x) \] Thus, we have: \[ \int e^x (1+x) \sec^2(x e^x) \, dx = \tan(x e^x) + C \] ### Conclusion From the above steps, we can conclude that: \[ f(x) = \tan(x e^x) \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

If int(e^(x)-1)/(e^(x)+1)dx=f(x)+C, then f(x) is equal to

inte^(x)(1+x)sec^(2)(xe^(x))dx=f (x)+ Constant , then f (x) is equal to

If int f(x)dx=f(x), then int{f(x)}^(2)dx is equal to

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

If int(dx)/(xf(x))=f(f(x))+c, then f(x) is equal to

If int (e ^(x) (1+ sin x )dx)/( 1+ cos x ) = e ^(x) f (x) + C, then f (x) is equal to