Home
Class 12
MATHS
int(1+tan^2x)/(1-tan^2x)dx is equal to...

`int(1+tan^2x)/(1-tan^2x)dx` is equal to

A

`log((1-tanx)/(1+tanx))+C`

B

`log((1+tanx)/(1-tanx))+C`

C

`1/2log((1-tanx)/(1+tanx))+C`

D

`1/2log((1+tanx)/(1-tanx))+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    BITSAT GUIDE|Exercise BITSAT Archives|8 Videos
  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos

Similar Questions

Explore conceptually related problems

int(1+tan^(2)x)/(1-tan^(2)x)dx

int(2tan x)/(1+tan^(2)x)dx

int(1-tan^(2)x)/(1+tan^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

int_(0)^(pi//4) (sec^(2)x)/((1+tan x)(2+tan x))dx is equal to

int sqrt(1+2tan x(tan x+sec x))dx is equal to