Home
Class 12
MATHS
A=[[2,-3,4]], B = [[3],[2],[2]], X = [[1...

A=`[[2,-3,4]], B = [[3],[2],[2]], X = [[1,2,3]]` and `Y = [[2],[3],[4]]`, then AB + XY =

A

[28]

B

`[[35],[36],[37]]`

C

`[[35,36,37]]`

D

`[[28,0,0],[0,28,0],[0,0,28]]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( AB + XY \), we will follow these steps: ### Step 1: Calculate \( AB \) Given matrices: - \( A = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \) (1x3 matrix) - \( B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \) (3x1 matrix) To multiply \( A \) and \( B \): \[ AB = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} \] Calculating the multiplication: \[ AB = (2 \cdot 3) + (-3 \cdot 2) + (4 \cdot 2) \] \[ = 6 - 6 + 8 \] \[ = 8 \] Thus, \( AB = \begin{bmatrix} 8 \end{bmatrix} \) (1x1 matrix). ### Step 2: Calculate \( XY \) Given matrices: - \( X = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \) (1x3 matrix) - \( Y = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \) (3x1 matrix) To multiply \( X \) and \( Y \): \[ XY = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \] Calculating the multiplication: \[ XY = (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 4) \] \[ = 2 + 6 + 12 \] \[ = 20 \] Thus, \( XY = \begin{bmatrix} 20 \end{bmatrix} \) (1x1 matrix). ### Step 3: Calculate \( AB + XY \) Now we add the results from steps 1 and 2: \[ AB + XY = \begin{bmatrix} 8 \end{bmatrix} + \begin{bmatrix} 20 \end{bmatrix} \] \[ = 8 + 20 \] \[ = 28 \] Thus, the final result is: \[ AB + XY = \begin{bmatrix} 28 \end{bmatrix} \] ### Final Answer The answer is \( 28 \). ---
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - B|20 Videos
  • SAMPLE PAPER - 5

    EDUCART PUBLICATION|Exercise Section - C|10 Videos
  • SAMPLE PAPER (SELF-ASSESSMENT) -10

    EDUCART PUBLICATION|Exercise SECTION - C|5 Videos
  • SAMPLE PAPER 09

    EDUCART PUBLICATION|Exercise SECTIONS-C|8 Videos

Similar Questions

Explore conceptually related problems

If A =[ 1 2 3 4 ] and B=[[1],[2],[3],[4]] then AB=

If A=[[2,3],[0,1]] and B=[[3,4],[2,1]] ,then (AB)=

Given A=[[1,-1, 0], [2, 3, 4], [0, 1, 2]], B= [[2,2,-4],[-4,2,-4],[2,-1,5]] find AB and use this to solve the system of equations: y+2x=7,x-y=3,2x+3y+4z=17

If A=[[1,-2,3],[-4,2,5]] & B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

If A=[[1,-2,3],[-4,2,5]] , B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)] , then Find AB

If A=[[1,2,3]], B=[(-5,4,0),(0,2,-1),(1,-3,2)] then (A) AB=[(-2),(-1),(4)] (B) AB=[-2,-1,4] (C) AB=[4,-1,2] (D) AB=[(-5,4,0),(0,4,-2),(3,-9,6)]

If the normals at (x_(i),y_(i)) i=1,2,3,4 to the rectangular hyperbola xy=2 meet at the point (3,4) then (A) x_(1)+x_(2)+x_(3)+x_(4)=3 (B) y_(1)+y_(2)+y_(3)+y_(4)=4 (C) y_(1)y_(2)y_(3)y_(4)=4 (D) x_(1)x_(2)x_(3)x_(4)=-4

If a=2b, then a:b=2:1 (b) 1:2( c) 3:4 (d) 4:3