Home
Class 8
MATHS
Simplify : (x^(2)-(y-z)^(2))/((x+z)^(2...

Simplify :
`(x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))`

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the given expression \[ \frac{x^2 - (y - z)^2}{(x + z)^2 - y^2} + \frac{y^2 - (x - z)^2}{(x + y)^2 - z^2} + \frac{z^2 - (x - y)^2}{(y + z)^2 - x^2} \] we will use the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). ### Step 1: Simplify the first term The first term is \[ \frac{x^2 - (y - z)^2}{(x + z)^2 - y^2} \] Using the difference of squares formula: - Numerator: \[ x^2 - (y - z)^2 = (x + (y - z))(x - (y - z)) = (x + y - z)(x - y + z) \] - Denominator: \[ (x + z)^2 - y^2 = ((x + z) + y)((x + z) - y) = (x + z + y)(x + z - y) \] Thus, the first term simplifies to: \[ \frac{(x + y - z)(x - y + z)}{(x + z + y)(x + z - y)} \] ### Step 2: Simplify the second term The second term is \[ \frac{y^2 - (x - z)^2}{(x + y)^2 - z^2} \] Using the difference of squares formula: - Numerator: \[ y^2 - (x - z)^2 = (y + (x - z))(y - (x - z)) = (y + x - z)(y - x + z) \] - Denominator: \[ (x + y)^2 - z^2 = ((x + y) + z)((x + y) - z) = (x + y + z)(x + y - z) \] Thus, the second term simplifies to: \[ \frac{(y + x - z)(y - x + z)}{(x + y + z)(x + y - z)} \] ### Step 3: Simplify the third term The third term is \[ \frac{z^2 - (x - y)^2}{(y + z)^2 - x^2} \] Using the difference of squares formula: - Numerator: \[ z^2 - (x - y)^2 = (z + (x - y))(z - (x - y)) = (z + x - y)(z - x + y) \] - Denominator: \[ (y + z)^2 - x^2 = ((y + z) + x)((y + z) - x) = (y + z + x)(y + z - x) \] Thus, the third term simplifies to: \[ \frac{(z + x - y)(z - x + y)}{(y + z + x)(y + z - x)} \] ### Step 4: Combine all terms Now we have: \[ \frac{(x + y - z)(x - y + z)}{(x + z + y)(x + z - y)} + \frac{(y + x - z)(y - x + z)}{(x + y + z)(x + y - z)} + \frac{(z + x - y)(z - x + y)}{(y + z + x)(y + z - x)} \] ### Step 5: Cancel common terms Notice that in each term, the denominators have common factors that can cancel out. After simplification, we will find that all terms in the numerator will combine to yield \(x + y + z\). ### Final Result Thus, the entire expression simplifies to: \[ \frac{x + y + z}{x + y + z} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2017-18 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017-18 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018-19 SET -B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

(x^(2)-(y-2)^(2))/((x+2)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))=

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

Simplify: (x^(2)+y^(2)-z^(2))^(2)-(x^(2)-y^(2)+z^(2))^(2)

Simplify (x+y+z)^(3)-(x-y-z)^(2) .

Simplify: (x+y-2z)^(2)-x^(2)-y^(2)-3z^(2)+4xy

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2)) is divisible by

(y^(2)+yz+z^(2))/((x-y)(x-z))+(z^(2)+zx+x^(2))/((y-z)(y-x))+(x^(2)+xy+y^(2))/((z-x)(z-y))