Home
Class 8
MATHS
If (x^(2)+1/(x^(2)))=34,(x gt0) , then ...

If `(x^(2)+1/(x^(2)))=34,(x gt0)` , then find the value of `x^(3)+1/(x^(3))`

A

198

B

216

C

200

D

186

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: 1. **Given Equation**: \[ x^2 + \frac{1}{x^2} = 34 \] 2. **Finding \( x + \frac{1}{x} \)**: We can use the identity: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] Rearranging this gives: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] Substituting the given value: \[ 34 = \left( x + \frac{1}{x} \right)^2 - 2 \] Adding 2 to both sides: \[ \left( x + \frac{1}{x} \right)^2 = 36 \] Taking the square root: \[ x + \frac{1}{x} = 6 \quad (\text{since } x > 0) \] 3. **Finding \( x^3 + \frac{1}{x^3} \)**: We can use the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3\left( x + \frac{1}{x} \right) \] Substituting \( x + \frac{1}{x} = 6 \): \[ x^3 + \frac{1}{x^3} = 6^3 - 3 \cdot 6 \] Calculating \( 6^3 \): \[ 6^3 = 216 \] Calculating \( 3 \cdot 6 \): \[ 3 \cdot 6 = 18 \] Thus: \[ x^3 + \frac{1}{x^3} = 216 - 18 = 198 \] 4. **Final Answer**: \[ x^3 + \frac{1}{x^3} = 198 \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2017-18 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017-18 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018-19 SET -B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).