Home
Class 8
MATHS
Divide (64x^(2)+48xy+9y^(2))(x+2) by (8x...

Divide `(64x^(2)+48xy+9y^(2))(x+2)` by `(8x^(2)+16x+3xy+6y)`

A

`8x+9y`

B

`2x+14y`

C

`8x+3y`

D

`3x-8y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \((64x^{2}+48xy+9y^{2})(x+2)\) by \((8x^{2}+16x+3xy+6y)\), we can follow these steps: ### Step 1: Factor the numerator The numerator is \((64x^{2}+48xy+9y^{2})(x+2)\). First, we need to factor \(64x^{2}+48xy+9y^{2}\). Notice that: \[ 64x^{2} + 48xy + 9y^{2} = (8x)^{2} + 2(8x)(3y) + (3y)^{2} \] This can be recognized as a perfect square trinomial, which factors to: \[ (8x + 3y)^{2} \] Thus, the numerator becomes: \[ (8x + 3y)^{2}(x + 2) \] ### Step 2: Factor the denominator Now, we will factor the denominator \(8x^{2}+16x+3xy+6y\). We can group the terms: \[ (8x^{2} + 16x) + (3xy + 6y) \] Factoring out common terms gives us: \[ 8x(x + 2) + 3y(x + 2) \] Now, we can factor out \((x + 2)\): \[ (x + 2)(8x + 3y) \] ### Step 3: Write the division Now we can rewrite the division: \[ \frac{(8x + 3y)^{2}(x + 2)}{(x + 2)(8x + 3y)} \] ### Step 4: Cancel common factors We can cancel the common factor \((x + 2)\) from the numerator and denominator: \[ \frac{(8x + 3y)^{2}}{8x + 3y} \] This simplifies to: \[ 8x + 3y \] ### Final Answer Thus, the final answer is: \[ \boxed{8x + 3y} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2018-19 SET -B

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS|10 Videos
  • IMO QUESTION PAPER 2018-19 SET -B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017-18 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2018-19 SET- A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

Divide 14x^(3)y^(2)+8x^(2)y^(3)-32x^(2)y^(5) by -2xy^(2)

Divide: (i) 6x^(5) + 18 x^(4) - 3x^(2) by 3x^(2) (ii) 20 x^(3) y + 12 x^(2) y^(2) - 10 xy by 2xy

If x:y::5:2, then (x ^(2) - xy + y ^(2))/( x ^(2) + xy + y ^(2)) = ?

Subtract : 6x ^(2) - 4 xy + 5y ^(2) from 8y ^(2) + 6 xy - 3x ^(2)

Divide: (i) 5m^(2) - 30 m^(2) + 45m by 5m (ii) 8x^(2) y^(2) - 6xy + 10 x^(2) y^(3) by 2xy (iii) 9x^(2) y - 6xy + 12 xy^(2) by - 3xy (iv) 12x^(4) + 8x^(3) - 6x^(2) by -2x^(2)

Check whether the following are perfect squares or not : (a) 64x^(2) + 81y^(2) - 144 xy (b) 4x^(2) + 8y^(2) + 16 xy

Divide 36x^(2)y^(5)+42xy^(3)-24x^(3)y^(2)-12y^(5) by -6y^(2) .