Home
Class 12
MATHS
lim(x rarr(pi)/(2))((1)/((x-(pi)/(2))^(2...

`lim_(x rarr(pi)/(2))((1)/((x-(pi)/(2))^(2))int_(x^(3))^(3)cos(t^((1)/(3)))dt)` is equal to

A

`3(pi/3)^3`

B

`3/2(pi/2)^2`

C

`(pi/2)^3`

D

`(pi/2)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to \frac{\pi}{2}} \frac{1}{(x - \frac{\pi}{2})^2} \int_{x^3}^{(\frac{\pi}{2})^3} \cos(t^{\frac{1}{3}}) \, dt, \] we will use L'Hospital's Rule since we have a \( \frac{0}{0} \) form as \( x \) approaches \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Identify the limit form**: As \( x \to \frac{\pi}{2} \), both the numerator and denominator approach 0. The numerator approaches \( \int_{(\frac{\pi}{2})^3}^{(\frac{\pi}{2})^3} \cos(t^{\frac{1}{3}}) \, dt = 0 \) and the denominator \( (x - \frac{\pi}{2})^2 \to 0 \). 2. **Apply L'Hospital's Rule**: Differentiate the numerator and denominator with respect to \( x \). - **Numerator**: By the Fundamental Theorem of Calculus, the derivative of the integral is given by: \[ \frac{d}{dx} \left( \int_{x^3}^{(\frac{\pi}{2})^3} \cos(t^{\frac{1}{3}}) \, dt \right) = -\cos((x^3)^{\frac{1}{3}}) \cdot \frac{d}{dx}(x^3) = -\cos(x) \cdot 3x^2. \] - **Denominator**: The derivative of \( (x - \frac{\pi}{2})^2 \) is: \[ 2(x - \frac{\pi}{2}). \] 3. **Rewrite the limit**: Now we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{-3x^2 \cos(x)}{2(x - \frac{\pi}{2})}. \] 4. **Evaluate the limit again**: As \( x \to \frac{\pi}{2} \), we still have a \( \frac{0}{0} \) form. We apply L'Hospital's Rule again. - **Differentiate the numerator**: \[ \frac{d}{dx}(-3x^2 \cos(x)) = -3(2x \cos(x) - x^2 \sin(x)). \] - **Differentiate the denominator**: \[ \frac{d}{dx}(2(x - \frac{\pi}{2})) = 2. \] 5. **Rewrite the limit again**: \[ \lim_{x \to \frac{\pi}{2}} \frac{-3(2x \cos(x) - x^2 \sin(x))}{2}. \] 6. **Substitute \( x = \frac{\pi}{2} \)**: \[ = \frac{-3}{2} \left( 2 \cdot \frac{\pi}{2} \cdot \cos(\frac{\pi}{2}) - \left(\frac{\pi}{2}\right)^2 \sin(\frac{\pi}{2}) \right). \] Since \( \cos(\frac{\pi}{2}) = 0 \) and \( \sin(\frac{\pi}{2}) = 1 \), this simplifies to: \[ = \frac{-3}{2} \left(0 - \frac{\pi^2}{4}\right) = \frac{3\pi^2}{8}. \] ### Final Answer: Thus, the limit is: \[ \frac{3\pi^2}{8}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Lim_(x rarr(pi)/(2))(cos x)^(((pi)/(2)-x))

Lim_(x rarr pi/2)(cos x)/((pi)/(2)-x)

lim_(x rarr(pi)/(2))(cot x-cos x)/(((pi)/(2)-x)^(3))=

lim_ (x rarr (pi) / (2)) (cos x) / (x- (pi) / (2))

lim_ (x rarr (pi) / (2)) (cos x) / (x- (pi) / (2))

lim_(x rarr(3 pi)/(2))(1+cosec^(3)x)/(cot^(2)x)

lim_(x rarr(3 pi)/(2))(1+cosec^(3)x)/(cot^(2)x)

Evaluate: lim_(x rarr(pi)/(2))(1+cos2x)/((pi-2x)^(2))

lim_ (x rarr (pi) / (2)) (1 + cos2x) / ((pi-2x) ^ (2))

lim_ (x rarr (pi) / (2)) [(x- (pi) / (2)) / (cos x)]

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. lim(x rarr(pi)/(2))((1)/((x-(pi)/(2))^(2))int(x^(3))^(3)cos(t^((1)/(3)...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |