Home
Class 12
MATHS
A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)...

`A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)]` and`abs(2A)^3=2^21` then find `alpha (alpha, beta inI^+)`

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) given the matrix \( A \) and the determinant condition. Let's break it down step by step. ### Step 1: Write down the matrix and find its determinant The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{pmatrix} \] To find the determinant of \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, this simplifies to: \[ \text{det}(A) = 1 \cdot (\alpha \cdot \alpha - \beta \cdot \beta) = \alpha^2 - \beta^2 \] ### Step 2: Use the given condition We are given that: \[ \text{abs}(2A)^3 = 2^{21} \] This can be interpreted as: \[ |2A|^3 = 2^{21} \] Now, we know that: \[ |2A| = 2^3 |A| = 8 |\text{det}(A)| \] Thus: \[ (8 |\text{det}(A)|)^3 = 2^{21} \] This simplifies to: \[ 512 |\text{det}(A)|^3 = 2^{21} \] Since \( 512 = 2^9 \), we can write: \[ 2^9 |\text{det}(A)|^3 = 2^{21} \] Dividing both sides by \( 2^9 \): \[ |\text{det}(A)|^3 = 2^{21 - 9} = 2^{12} \] Taking the cube root: \[ |\text{det}(A)| = 2^{12/3} = 2^4 = 16 \] ### Step 3: Set up the equation From Step 1, we have: \[ |\text{det}(A)| = |\alpha^2 - \beta^2| = 16 \] This gives us two cases: 1. \( \alpha^2 - \beta^2 = 16 \) 2. \( \beta^2 - \alpha^2 = 16 \) (which we can ignore since \( \alpha, \beta \in \mathbb{I}^+ \)) ### Step 4: Factor the equation Using the difference of squares: \[ \alpha^2 - \beta^2 = (\alpha + \beta)(\alpha - \beta) = 16 \] Now we need to find pairs of integers \( (x, y) \) such that \( x \cdot y = 16 \) where \( x = \alpha + \beta \) and \( y = \alpha - \beta \). ### Step 5: Find integer pairs The pairs of factors of 16 are: - \( (1, 16) \) - \( (2, 8) \) - \( (4, 4) \) ### Step 6: Solve for \( \alpha \) and \( \beta \) 1. **For \( (1, 16) \)**: \[ \alpha + \beta = 16, \quad \alpha - \beta = 1 \] Adding these: \[ 2\alpha = 17 \implies \alpha = 8.5 \quad (\text{not an integer}) \] 2. **For \( (2, 8) \)**: \[ \alpha + \beta = 8, \quad \alpha - \beta = 2 \] Adding these: \[ 2\alpha = 10 \implies \alpha = 5 \] Substituting back: \[ 5 + \beta = 8 \implies \beta = 3 \] 3. **For \( (4, 4) \)**: \[ \alpha + \beta = 4, \quad \alpha - \beta = 4 \] Adding these: \[ 2\alpha = 8 \implies \alpha = 4 \] Substituting back: \[ 4 + \beta = 4 \implies \beta = 0 \quad (\text{not positive}) \] ### Conclusion The only valid solution is: \[ \alpha = 5, \quad \beta = 3 \] Thus, the value of \( \alpha \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If coa(alpha+beta)+sin(alpha-beta)=0 and 2010tan beta+1=0 then tan alpha=

sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2)quad 0<=alpha,beta,<=(pi)/(2), then find tan(alpha+2 beta) and tan(2 alpha+beta)

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta=(1)/(2008). Find tan alpha.

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If |(1+beta^2,beta,beta^2),(3, alpha -2,3),(alpha,1,alpha)|=|(a1+alpha^2,1,beta),(alpha,beta-2,3),(alpha^2,1,beta)|=0 where alpha, beta in R and alpha lt beta then identify whichof the following statement(s) is(are) correct?

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

If sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2), where 0<=,beta<=(pi)/(2) ,then find the values of tan(alpha+2 beta) and tan(2 alpha+beta)

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If 0<=alpha,beta<=90^(@) and tan(alpha+beta)=3 and tan(alpha-beta)=2 then value of sin2 alpha is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)] andabs(2A)^3=2^21 then find ...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |