Home
Class 12
MATHS
If alpha,-(pi)/(2) lt alpha lt (pi)/(2) ...

If `alpha,-(pi)/(2) lt alpha lt (pi)/(2)` is the solution of `4cos theta+5sin theta=1` ,then the value of `tan alpha` is

A

`(sqrt10+10)/12`

B

`(sqrt10-10)/12`

C

`(10-sqrt10)/12`

D

`(sqrt10+10)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(4 \cos \theta + 5 \sin \theta = 1\) for \(\tan \alpha\) where \(\alpha\) is a solution in the range \(-\frac{\pi}{2} < \alpha < \frac{\pi}{2}\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 4 \cos \theta + 5 \sin \theta = 1 \] ### Step 2: Express \(\cos \theta\) and \(\sin \theta\) in terms of \(\tan \frac{\theta}{2}\) Using the half-angle formulas: - \(\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}\) - \(\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}\) Let \(x = \tan \frac{\theta}{2}\). Then we can substitute these into the equation: \[ 4 \left(\frac{1 - x^2}{1 + x^2}\right) + 5 \left(\frac{2x}{1 + x^2}\right) = 1 \] ### Step 3: Combine the fractions To combine the fractions, we multiply through by \(1 + x^2\): \[ 4(1 - x^2) + 10x = 1 + x^2 \] ### Step 4: Rearrange the equation Expanding and rearranging gives: \[ 4 - 4x^2 + 10x = 1 + x^2 \] \[ -5x^2 + 10x + 3 = 0 \] ### Step 5: Multiply by -1 To simplify, we can multiply the entire equation by -1: \[ 5x^2 - 10x - 3 = 0 \] ### Step 6: Use the quadratic formula Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): - Here, \(a = 5\), \(b = -10\), and \(c = -3\). \[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 5 \cdot (-3)}}{2 \cdot 5} \] \[ x = \frac{10 \pm \sqrt{100 + 60}}{10} \] \[ x = \frac{10 \pm \sqrt{160}}{10} \] \[ x = \frac{10 \pm 4\sqrt{10}}{10} \] \[ x = 1 \pm \frac{2\sqrt{10}}{5} \] ### Step 7: Choose the correct root Since \(\alpha\) is in the range \(-\frac{\pi}{2} < \alpha < \frac{\pi}{2}\), we take the positive root: \[ \tan \frac{\theta}{2} = 1 - \frac{2\sqrt{10}}{5} \] ### Step 8: Find \(\tan \alpha\) Using the double angle formula for tangent: \[ \tan \alpha = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} \] Substituting \(\tan \frac{\theta}{2}\): \[ \tan \alpha = \frac{2(1 - \frac{2\sqrt{10}}{5})}{1 - (1 - \frac{2\sqrt{10}}{5})^2} \] ### Step 9: Simplify the expression Calculating the denominator: \[ (1 - \frac{2\sqrt{10}}{5})^2 = 1 - \frac{4\sqrt{10}}{5} + \frac{40}{25} = 1 - \frac{4\sqrt{10}}{5} + \frac{8}{5} \] \[ = \frac{5 - 4\sqrt{10} + 8}{5} = \frac{13 - 4\sqrt{10}}{5} \] Thus: \[ \tan \alpha = \frac{2(1 - \frac{2\sqrt{10}}{5})}{\frac{13 - 4\sqrt{10}}{5}} = \frac{10(1 - \frac{2\sqrt{10}}{5})}{13 - 4\sqrt{10}} \] ### Final Step: Calculate and simplify After simplifying, we find the value of \(\tan \alpha\).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If sin theta =12/13 ,(pi)/(2) lt theta lt pi find the value of sec theta + tan theta

If sin(theta+alpha)=cos(theta+alpha) then the value of tan theta is

If sin theta=3sin(theta+2 alpha), then the value of tan(theta+alpha)+2tan alpha is

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If alpha,-(pi)/(2) lt alpha lt (pi)/(2) is the solution of 4cos theta+...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |