Home
Class 12
MATHS
f(x)={(2+2x,-3lexle0),(1-x/(2),0 lt x le...

`f(x)={(2+2x,-3lexle0),(1-x/(2),0 lt x le1))`
`g(x)={(-x,-1lexlt0),(x, 0lexle1))`
Range of fog(x) is

A

`[1/2,4]`

B

`[-infty,1/2]cup[1,2]`

C

`[1/2,1]cup{2}`

D

`[1/2,1]cup[4,infty]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the composite function \( f(g(x)) \), we will follow these steps: ### Step 1: Define the Functions We have two piecewise functions: - \( f(x) = \begin{cases} 2 + 2x & \text{for } -3 \leq x \leq 0 \\ 1 - \frac{x}{2} & \text{for } 0 < x \leq 1 \end{cases} \) - \( g(x) = \begin{cases} -x & \text{for } -1 \leq x < 0 \\ x & \text{for } 0 \leq x \leq 1 \end{cases} \) ### Step 2: Find the Range of \( g(x) \) First, we need to find the range of \( g(x) \): - For \( -1 \leq x < 0 \), \( g(x) = -x \) which ranges from \( g(-1) = 1 \) to \( g(0) = 0 \) (not including 0). - For \( 0 \leq x \leq 1 \), \( g(x) = x \) which ranges from \( g(0) = 0 \) to \( g(1) = 1 \). Thus, the overall range of \( g(x) \) is \( [0, 1] \). ### Step 3: Evaluate \( f(g(x)) \) Now we will evaluate \( f(g(x)) \) for the range of \( g(x) \): 1. **For \( g(x) \in [0, 1] \)**: - When \( g(x) = 0 \), \( f(0) = 2 + 2(0) = 2 \). - When \( g(x) = 1 \), \( f(1) = 1 - \frac{1}{2} = \frac{1}{2} \). 2. **Evaluate \( f(g(x)) \) for \( g(x) \) values**: - For \( g(x) \) in the range \( [0, 1] \): - When \( g(x) \) is in \( [0, 0] \), we use \( f(x) = 2 + 2x \) which gives \( f(g(x)) = 2 + 2(0) = 2 \). - When \( g(x) \) is in \( (0, 1] \), we use \( f(x) = 1 - \frac{x}{2} \) which gives \( f(g(x)) = 1 - \frac{x}{2} \) where \( x \) varies from \( 0 \) to \( 1 \). ### Step 4: Determine the Range of \( f(g(x)) \) - For \( g(x) = 0 \), \( f(g(x)) = 2 \). - For \( g(x) = 1 \), \( f(g(x)) = \frac{1}{2} \). As \( g(x) \) varies from \( 0 \) to \( 1 \), \( f(g(x)) \) will decrease from \( 2 \) to \( \frac{1}{2} \). ### Step 5: Conclusion The range of \( f(g(x)) \) is from \( \frac{1}{2} \) to \( 2 \). ### Final Answer The range of \( f(g(x)) \) is \( \left[\frac{1}{2}, 2\right] \). ---
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

Let f(x)=f_1(x)-2f_2 (x), where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

f(x)={(ae^x+be^(-x),-1lexle1),(cx^2,1lexle3),(2ax+c,3lexle4):} , f'(0)+f'(2)=

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let f(x)={{:(-2",",-3lexle0),(x-2",",0ltxle3):}andg(x)=f(|x|)+|f(x)| Which of the following statement is/are correct? 1. g(x) is differentiable x=0. g(x) is differentiable at x=2. Select the correct aswer using the code given below:

Let f(x)={{:(-2",",-3lexle0),(x-2",",0ltxle3):}andg(x)=f(|x|)+|f(x)| What is the value of the differential coefficient of g(x) at x=-2?

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} The graph of y=g(x) in its domain is broken at

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. f(x)={(2+2x,-3lexle0),(1-x/(2),0 lt x le1)) g(x)={(-x,-1lexlt0),(x, 0l...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |