Home
Class 12
MATHS
int(pi/2)^(pi/2)((x^2cosx)/(1+pi^x)+(sin...

`int_(pi/2)^(pi/2)((x^2cosx)/(1+pi^x)+(sin^2x+1)/(e^(sin^(2025)x)+1))dx`

A

`pi/2+(3pi)^2/4-2`

B

`pi/4+(3pi)^2/4+2`

C

`pi^2/4+(3pi)/4-2`

D

`pi^2/4+(3pi)/4+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{\sin^2 x + 1}{e^{\sin^{2025} x} + 1} \right) dx, \] we can use properties of definite integrals to simplify our calculations. ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] Here, \( a = -\frac{\pi}{2} \) and \( b = \frac{\pi}{2} \), so \( a + b = 0 \). Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-x) \, dx. \] ### Step 2: Substitute \( f(-x) \) Now we compute \( f(-x) \): \[ f(-x) = \frac{(-x)^2 \cos(-x)}{1 + \pi^{-x}} + \frac{\sin^2(-x) + 1}{e^{\sin^{2025}(-x)} + 1}. \] Since \( \cos(-x) = \cos x \) and \( \sin(-x) = -\sin x \), we get: \[ f(-x) = \frac{x^2 \cos x}{1 + \frac{1}{\pi^x}} + \frac{\sin^2 x + 1}{e^{-\sin^{2025} x} + 1}. \] ### Step 3: Rewrite \( f(-x) \) Now we can rewrite \( f(-x) \): \[ f(-x) = \frac{x^2 \cos x}{1 + \frac{1}{\pi^x}} + \frac{\sin^2 x + 1}{\frac{1}{e^{\sin^{2025} x}} + 1} = \frac{x^2 \cos x}{1 + \frac{1}{\pi^x}} + \frac{(\sin^2 x + 1)e^{\sin^{2025} x}}{1 + e^{\sin^{2025} x}}. \] ### Step 4: Combine \( I \) and \( f(-x) \) Now, we can add \( I \) and \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(-x) \, dx \): \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( f(x) + f(-x) \right) dx. \] ### Step 5: Simplify the expression Combining the two expressions, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{x^2 \cos x}{1 + \frac{1}{\pi^x}} + \frac{\sin^2 x + 1}{e^{\sin^{2025} x} + 1} + \frac{(\sin^2 x + 1)e^{\sin^{2025} x}}{1 + e^{\sin^{2025} x}} \right) dx. \] ### Step 6: Evaluate the integral This simplifies to: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 \cos x + \sin^2 x + 1 \right) dx. \] ### Step 7: Use symmetry Since \( x^2 \cos x \) is an even function and \( \sin^2 x + 1 \) is also even, we can evaluate: \[ I = \int_{0}^{\frac{\pi}{2}} \left( x^2 \cos x + \sin^2 x + 1 \right) dx. \] ### Step 8: Split the integral Now we can split the integral: \[ I = \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx + \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx + \int_{0}^{\frac{\pi}{2}} 1 \, dx. \] ### Step 9: Evaluate each integral 1. The first integral \( \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx \) can be solved using integration by parts. 2. The second integral \( \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{4} \). 3. The third integral \( \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \). ### Final Step: Combine results After evaluating, combine the results to find \( I \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

int_(0)^( pi/2)(cosx)/(1+sin x)dx

int_(pi//4)^(pi//2)((1-3cosx))/(sin^(2)x)dx

int_(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?

int_(0)^(pi//2) (cosx )/ (1+sin^(2)x)dx=

int_(-pi)^( pi)(sin^(2)x)/(1+a^(x))dx

int_(0)^(pi//2) (cosx)/((1+sin x)(2+sin x) ) dx =

int_(-pi//2)^(pi//2)(1)/(1+e^(sin x))dx=

The value of the definite integral int_(0)^( pi)((1-x sin2x)e^(cos^(2)x)+(1+x sin2x)e^(sin^(2)x)) dx is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. int(pi/2)^(pi/2)((x^2cosx)/(1+pi^x)+(sin^2x+1)/(e^(sin^(2025)x)+1))dx

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |