Home
Class 12
MATHS
If dy/dx-(sin2x)/(1+cos^2x)y=(sinx)/(1+c...

If `dy/dx-(sin2x)/(1+cos^2x)y=(sinx)/(1+cos^2x)` and `y(0)=0` then `y(pi/2)` is

A

2

B

1

C

5

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} - \frac{\sin 2x}{1 + \cos^2 x} y = \frac{\sin x}{1 + \cos^2 x} \] with the initial condition \( y(0) = 0 \), we can follow these steps: ### Step 1: Identify the components of the linear differential equation The equation is in the standard form \( \frac{dy}{dx} + P(x)y = Q(x) \), where: - \( P(x) = -\frac{\sin 2x}{1 + \cos^2 x} \) - \( Q(x) = \frac{\sin x}{1 + \cos^2 x} \) ### Step 2: Find the integrating factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int P(x) \, dx} = e^{\int -\frac{\sin 2x}{1 + \cos^2 x} \, dx} \] To compute this integral, we can use the substitution \( t = 1 + \cos^2 x \). Then, we have: \[ dt = -2\cos x \sin x \, dx \quad \Rightarrow \quad -\sin 2x \, dx = dt \] Thus, \[ \int -\frac{\sin 2x}{1 + \cos^2 x} \, dx = \int \frac{dt}{t} = \ln |t| + C = \ln |1 + \cos^2 x| + C \] So, the integrating factor is: \[ \mu(x) = e^{\ln(1 + \cos^2 x)} = 1 + \cos^2 x \] ### Step 3: Multiply the differential equation by the integrating factor Multiply the entire differential equation by \( 1 + \cos^2 x \): \[ (1 + \cos^2 x) \frac{dy}{dx} - \frac{\sin 2x}{1 + \cos^2 x} (1 + \cos^2 x) y = \sin x \] This simplifies to: \[ (1 + \cos^2 x) \frac{dy}{dx} - \sin 2x \cdot y = \sin x \] ### Step 4: Rewrite the left-hand side The left-hand side can be written as the derivative of a product: \[ \frac{d}{dx} \left( y(1 + \cos^2 x) \right) = \sin x \] ### Step 5: Integrate both sides Integrate both sides with respect to \( x \): \[ y(1 + \cos^2 x) = \int \sin x \, dx = -\cos x + C \] ### Step 6: Solve for \( y \) Rearranging gives: \[ y(1 + \cos^2 x) = -\cos x + C \] Thus, \[ y = \frac{-\cos x + C}{1 + \cos^2 x} \] ### Step 7: Apply the initial condition Using the initial condition \( y(0) = 0 \): \[ 0 = \frac{-\cos(0) + C}{1 + \cos^2(0)} = \frac{-1 + C}{2} \] This implies: \[ C = 1 \] ### Step 8: Substitute \( C \) back into the equation for \( y \) Now we have: \[ y = \frac{-\cos x + 1}{1 + \cos^2 x} \] ### Step 9: Find \( y(\frac{\pi}{2}) \) Now, we need to find \( y(\frac{\pi}{2}) \): \[ y\left(\frac{\pi}{2}\right) = \frac{-\cos\left(\frac{\pi}{2}\right) + 1}{1 + \cos^2\left(\frac{\pi}{2}\right)} = \frac{-0 + 1}{1 + 0} = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to :

If (2+sin x)(dy)/(dx)+(y+1)cos x=0 and y(0)=1, then y((pi)/(2)) is equal to -(1)/(3)(2)(4)/(3) (3) (1)/(3)(4)-(2)/(3)

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to:

2(x-y sin2x)dx+(3y^(2)+cos2x)dy=0

If y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2)) equals

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If dy/dx-(sin2x)/(1+cos^2x)y=(sinx)/(1+cos^2x) and y(0)=0 then y(pi/2)...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |