Home
Class 12
MATHS
f(x)=((2^x+2^(-x))(tanx)sqrt(tan^-1(2x^2...

`f(x)=((2^x+2^(-x))(tanx)sqrt(tan^-1(2x^2-3x+1)))/(7x^2-3x+1)^3`, then find f'(0)

A

`sqrt(3pi)`

B

`sqrt(2pi)`

C

`sqrt(pi)`

D

`2sqrt(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \[ f(x) = \frac{(2^x + 2^{-x}) \tan x \sqrt{\tan^{-1}(2x^2 - 3x + 1)}}{(7x^2 - 3x + 1)^3} \] we will use the definition of the derivative, which is given by: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \] ### Step 1: Calculate \( f(0) \) First, we need to evaluate \( f(0) \): \[ f(0) = \frac{(2^0 + 2^{-0}) \tan(0) \sqrt{\tan^{-1}(2(0)^2 - 3(0) + 1)}}{(7(0)^2 - 3(0) + 1)^3} \] Calculating each component: - \( 2^0 = 1 \) - \( 2^{-0} = 1 \) - \( \tan(0) = 0 \) - \( 2(0)^2 - 3(0) + 1 = 1 \) so \( \tan^{-1}(1) = \frac{\pi}{4} \) and \( \sqrt{\tan^{-1}(1)} = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2} \) - \( 7(0)^2 - 3(0) + 1 = 1 \) so \( (1)^3 = 1 \) Thus, \[ f(0) = \frac{(1 + 1) \cdot 0 \cdot \frac{\sqrt{\pi}}{2}}{1} = 0 \] ### Step 2: Calculate \( f(h) \) Next, we compute \( f(h) \): \[ f(h) = \frac{(2^h + 2^{-h}) \tan(h) \sqrt{\tan^{-1}(2h^2 - 3h + 1)}}{(7h^2 - 3h + 1)^3} \] ### Step 3: Substitute into the derivative formula Now substituting \( f(h) \) and \( f(0) \) into the derivative formula: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - 0}{h} = \lim_{h \to 0} \frac{f(h)}{h} \] ### Step 4: Simplify \( f(h) \) We can simplify \( f(h) \): \[ f(h) = \frac{(2^h + 2^{-h}) \tan(h) \sqrt{\tan^{-1}(2h^2 - 3h + 1)}}{(7h^2 - 3h + 1)^3} \] ### Step 5: Evaluate the limit Now we need to evaluate the limit: \[ f'(0) = \lim_{h \to 0} \frac{(2^h + 2^{-h}) \tan(h) \sqrt{\tan^{-1}(2h^2 - 3h + 1)}}{h(7h^2 - 3h + 1)^3} \] Using the properties of limits: - As \( h \to 0 \), \( 2^h + 2^{-h} \to 2 \) - \( \tan(h) \approx h \) as \( h \to 0 \) - \( \tan^{-1}(2h^2 - 3h + 1) \to \tan^{-1}(1) = \frac{\pi}{4} \) so \( \sqrt{\tan^{-1}(1)} \to \frac{\sqrt{\pi}}{2} \) - \( (7h^2 - 3h + 1)^3 \to 1^3 = 1 \) Thus, we have: \[ f'(0) = \lim_{h \to 0} \frac{2 \cdot h \cdot \frac{\sqrt{\pi}}{2}}{h \cdot 1} = \sqrt{\pi} \] ### Final Answer Therefore, \[ f'(0) = \sqrt{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

If 2f(x)-3f((1)/(x))=x^(2),x!=0, then find f(2)

if: f(x)=(sin x)/(sqrt(1+tan^(2)x))-(cos x)/(sqrt(1+cot^(2)x)), then find the range of f(x)

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for

f(x)=sqrt((x-2)sqrt(x-1))/(sqrt(x-1)-1). x then f'(10) & f'(3/2)=

f(x)=sqrt(log((3x-x^(2))/(x-1)))

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. f(x)=((2^x+2^(-x))(tanx)sqrt(tan^-1(2x^2-3x+1)))/(7x^2-3x+1)^3, then f...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |