Home
Class 12
MATHS
If A(veca)=2hati+2hatj+2hatk & B(vecb)=2...

If `A(veca)=2hati+2hatj+2hatk` & `B(vecb)=2hati+4hatj+4hatk` find the length of angle bisector of `angleAOB`

A

`1/2sqrt(136)`

B

`1/2sqrt(236)`

C

`1/3sqrt(236)`

D

`1/3sqrt(136)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the angle bisector of angle AOB given the position vectors of points A and B, we can follow these steps: ### Step 1: Identify the position vectors Given: - \( \vec{A} = 2\hat{i} + 2\hat{j} + 2\hat{k} \) - \( \vec{B} = 2\hat{i} + 4\hat{j} + 4\hat{k} \) ### Step 2: Calculate the magnitudes of the vectors Calculate the magnitude of \( \vec{A} \): \[ |\vec{A}| = \sqrt{(2)^2 + (2)^2 + (2)^2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] Calculate the magnitude of \( \vec{B} \): \[ |\vec{B}| = \sqrt{(2)^2 + (4)^2 + (4)^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6 \] ### Step 3: Use the angle bisector theorem According to the angle bisector theorem, if \( D \) is the point on the angle bisector of \( \angle AOB \), then: \[ \frac{AD}{DB} = \frac{|\vec{A}|}{|\vec{B}|} = \frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3} \] This means \( AD : DB = 1 : 2 \). ### Step 4: Find the position vector of point D Using the section formula, the position vector of point \( D \) that divides \( AB \) in the ratio \( 1:2 \) is given by: \[ \vec{D} = \frac{m\vec{B} + n\vec{A}}{m+n} \] where \( m = 1 \) and \( n = 2 \): \[ \vec{D} = \frac{1 \cdot (2\hat{i} + 4\hat{j} + 4\hat{k}) + 2 \cdot (2\hat{i} + 2\hat{j} + 2\hat{k})}{1 + 2} \] Calculating this gives: \[ \vec{D} = \frac{(2\hat{i} + 4\hat{j} + 4\hat{k}) + (4\hat{i} + 4\hat{j} + 4\hat{k})}{3} = \frac{(6\hat{i} + 8\hat{j} + 8\hat{k})}{3} = 2\hat{i} + \frac{8}{3}\hat{j} + \frac{8}{3}\hat{k} \] ### Step 5: Calculate the magnitude of vector \( \vec{D} \) Now, we find the length of the angle bisector \( OD \): \[ |\vec{D}| = \sqrt{\left(2\right)^2 + \left(\frac{8}{3}\right)^2 + \left(\frac{8}{3}\right)^2} \] Calculating this gives: \[ |\vec{D}| = \sqrt{4 + \frac{64}{9} + \frac{64}{9}} = \sqrt{4 + \frac{128}{9}} = \sqrt{\frac{36}{9} + \frac{128}{9}} = \sqrt{\frac{164}{9}} = \frac{\sqrt{164}}{3} \] ### Step 6: Simplify the result Since \( \sqrt{164} = 2\sqrt{41} \): \[ |\vec{D}| = \frac{2\sqrt{41}}{3} \] ### Final Answer The length of the angle bisector of angle AOB is: \[ \frac{2\sqrt{41}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If the sides of an angle are given by vectors veca=hati-2hatj+2hatk and vecb=2hati+hatj+2hatk , then find the internal bisector of the angle.

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Given veca = hati-hatj+hatk and vecb = 2hati-4hatj-3hatk , find the magnitude of veca

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA+vecB| will be

If veca=7hati-4hatj-4hatk and vecb=-2hati-hatj+2hatk , determine vector vecc along the internal bisector of the angle between vectors veca and vecb such that |vecc|= 5sqrt6 .

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If A(veca)=2hati+2hatj+2hatk & B(vecb)=2hati+4hatj+4hatk find the leng...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |