Home
Class 12
MATHS
int(pi/6)^(pi/3)sqrt(1-sin2theta)"d"thet...

`int_(pi/6)^(pi/3)sqrt(1-sin2theta)"d"theta=alpha+betasqrt2+gammasqrt3` then `3alpha+4beta-gamma=`

A

6

B

8

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1 - \sin 2\theta} \, d\theta \), we will follow these steps: ### Step 1: Simplify the integrand We start with the expression inside the square root: \[ \sqrt{1 - \sin 2\theta} \] Using the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \), we can rewrite this as: \[ 1 - \sin 2\theta = 1 - 2 \sin \theta \cos \theta \] This can be expressed in terms of sine and cosine: \[ 1 - 2 \sin \theta \cos \theta = (1 - \sin \theta)^2 + \cos^2 \theta \] Thus, we have: \[ \sqrt{1 - \sin 2\theta} = \sqrt{(1 - \sin \theta)^2 + \cos^2 \theta} \] ### Step 2: Set up the integral Now we can set up the integral: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{(1 - \sin \theta)^2 + \cos^2 \theta} \, d\theta \] ### Step 3: Evaluate the integral To evaluate the integral, we can split it into two parts based on the behavior of \( \sin \theta \) and \( \cos \theta \) in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \). 1. From \( \frac{\pi}{6} \) to \( \frac{\pi}{4} \), \( \cos \theta \geq \sin \theta \): \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sqrt{\cos \theta - \sin \theta} \, d\theta \] 2. From \( \frac{\pi}{4} \) to \( \frac{\pi}{3} \), \( \sin \theta \geq \cos \theta \): \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sqrt{\sin \theta - \cos \theta} \, d\theta \] ### Step 4: Compute the integrals Using the fundamental theorem of calculus, we can compute these integrals. The results will yield a numerical expression that can be compared to the form \( \alpha + \beta \sqrt{2} + \gamma \sqrt{3} \). ### Step 5: Compare coefficients After evaluating the integral, we will express the result in the form \( \alpha + \beta \sqrt{2} + \gamma \sqrt{3} \) and identify the coefficients \( \alpha, \beta, \gamma \). ### Step 6: Calculate \( 3\alpha + 4\beta - \gamma \) Finally, we substitute the values of \( \alpha, \beta, \gamma \) into the expression \( 3\alpha + 4\beta - \gamma \) to find the answer. ### Final Result After performing the calculations, we find that: \[ 3\alpha + 4\beta - \gamma = 6 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If int_(pi/6)^(pi/3) sqrt (1- sin 2x) dx = alpha beta sqrt 2 gamma sqrt 3 , where alpha, beta and gamma are rational numbers, then 3 alpha 4 beta-gamma is equal to _______.

int_(0)^( pi/2)sin^(3)theta d theta=

Find: int_0^(pi/2)sin^3theta d theta

int_ (0) (2 pi) | sin ^ (3) theta | d theta

Evaluate: int_(0)^( pi/2)sqrt(cos theta)sin^(3)theta d theta

int_0 2pi |sin3theta| d theta

int_(-(pi)/(2))^((pi)/(2))cos^(3)theta(1+sin theta)^(2)d theta is equal to

int_(0)^( pi)(sin theta+cos theta)/(sqrt(1+sin2 theta))d theta

Let alpha,beta,gamma>0 and alpha+beta+gamma=(pi)/(2). Then prove that sqrt(tan alpha tan beta)+sqrt(tan beta tan gamma)+sqrt(tan alpha tan gamma)<=sqrt(3)

Show that int_(0)^(2)sqrt((sin2 theta))sin theta d theta=(pi)/(4)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. int(pi/6)^(pi/3)sqrt(1-sin2theta)"d"theta=alpha+betasqrt2+gammasqrt3 t...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |