Home
Class 12
MATHS
Unit Vector hatu=xhati+yhatj+zhatk make ...

Unit Vector `hatu=xhati+yhatj+zhatk` make angles `pi/2, pi/3, (2pi)/3` with `(1/sqrt2hati+1/sqrt2hatk), (1/sqrt2hatj+1/sqrt2hatk)` and `(1/sqrt2hati+1/sqrt2hatj)` respectively and `vecv=1/sqrt2hati+1/sqrt2hatj+1/sqrt2hatk` Find `abs(vecu-vecv)`

A

`sqrt(5/2)`

B

`sqrt(7/2)`

C

`sqrt(2/5)`

D

`sqrt(7/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the unit vector \( \hat{u} = x \hat{i} + y \hat{j} + z \hat{k} \) that makes specific angles with given vectors. Then we will calculate the magnitude of the difference between \( \hat{u} \) and \( \vec{v} \). ### Step 1: Set up the vectors and angles Given: - \( \hat{u} = x \hat{i} + y \hat{j} + z \hat{k} \) - \( \vec{v} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \) The angles are: - \( \hat{u} \) makes an angle \( \frac{\pi}{2} \) with \( \vec{A} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k} \) - \( \hat{u} \) makes an angle \( \frac{\pi}{3} \) with \( \vec{B} = \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \) - \( \hat{u} \) makes an angle \( \frac{2\pi}{3} \) with \( \vec{C} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \) ### Step 2: Use the dot product for angle calculations 1. For \( \hat{u} \) and \( \vec{A} \) (angle \( \frac{\pi}{2} \)): \[ \hat{u} \cdot \vec{A} = 0 \] \[ (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \left(\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{k}\right) = 0 \] This gives: \[ \frac{x}{\sqrt{2}} + \frac{z}{\sqrt{2}} = 0 \implies x + z = 0 \implies z = -x \] 2. For \( \hat{u} \) and \( \vec{B} \) (angle \( \frac{\pi}{3} \)): \[ \hat{u} \cdot \vec{B} = |\hat{u}| |\vec{B}| \cos\left(\frac{\pi}{3}\right) \] Since \( |\hat{u}| = 1 \) and \( |\vec{B}| = 1 \): \[ \hat{u} \cdot \vec{B} = \frac{1}{2} \] This gives: \[ (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \left(\frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k}\right) = \frac{1}{2} \] Expanding this: \[ \frac{y}{\sqrt{2}} + \frac{z}{\sqrt{2}} = \frac{1}{2} \implies y + z = \frac{\sqrt{2}}{2} \] 3. For \( \hat{u} \) and \( \vec{C} \) (angle \( \frac{2\pi}{3} \)): \[ \hat{u} \cdot \vec{C} = |\hat{u}| |\vec{C}| \cos\left(\frac{2\pi}{3}\right) \] This gives: \[ (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \left(\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j}\right) = -\frac{1}{2} \] Expanding this: \[ \frac{x}{\sqrt{2}} + \frac{y}{\sqrt{2}} = -\frac{1}{2} \implies x + y = -\frac{\sqrt{2}}{2} \] ### Step 3: Solve the equations We have three equations: 1. \( z = -x \) 2. \( y + z = \frac{\sqrt{2}}{2} \) 3. \( x + y = -\frac{\sqrt{2}}{2} \) Substituting \( z = -x \) into the second equation: \[ y - x = \frac{\sqrt{2}}{2} \implies y = x + \frac{\sqrt{2}}{2} \] Substituting \( y = x + \frac{\sqrt{2}}{2} \) into the third equation: \[ x + \left(x + \frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2} \] \[ 2x + \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{2} \implies 2x = -\sqrt{2} \implies x = -\frac{\sqrt{2}}{2} \] Then, substituting back to find \( y \) and \( z \): \[ y = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 0 \] \[ z = -(-\frac{\sqrt{2}}{2}) = \frac{\sqrt{2}}{2} \] Thus, we have: \[ \hat{u} = -\frac{\sqrt{2}}{2} \hat{i} + 0 \hat{j} + \frac{\sqrt{2}}{2} \hat{k} \] ### Step 4: Calculate \( |\hat{u} - \vec{v}| \) Now, we calculate: \[ \hat{u} - \vec{v} = \left(-\frac{\sqrt{2}}{2} \hat{i} + 0 \hat{j} + \frac{\sqrt{2}}{2} \hat{k}\right) - \left(\frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k}\right) \] \[ = \left(-\frac{\sqrt{2}}{2} - \frac{1}{\sqrt{2}}\right) \hat{i} + \left(0 - \frac{1}{\sqrt{2}}\right) \hat{j} + \left(\frac{\sqrt{2}}{2} - \frac{1}{\sqrt{2}}\right) \hat{k} \] Calculating each component: - For \( \hat{i} \): \[ -\frac{\sqrt{2}}{2} - \frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = -\sqrt{2} \] - For \( \hat{j} \): \[ 0 - \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \] - For \( \hat{k} \): \[ \frac{\sqrt{2}}{2} - \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0 \] Thus: \[ \hat{u} - \vec{v} = -\sqrt{2} \hat{i} - \frac{1}{\sqrt{2}} \hat{j} \] ### Step 5: Calculate the magnitude Now, we find the magnitude: \[ |\hat{u} - \vec{v}| = \sqrt{(-\sqrt{2})^2 + \left(-\frac{1}{\sqrt{2}}\right)^2 + 0^2} \] \[ = \sqrt{2 + \frac{1}{2}} = \sqrt{\frac{5}{2}} = \frac{\sqrt{5}}{\sqrt{2}} = \frac{\sqrt{10}}{2} \] ### Final Answer Thus, the final answer is: \[ |\hat{u} - \vec{v}| = \frac{\sqrt{10}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Simplify (1/2+1/sqrt2-sqrt3)/(sqrt3-1/sqrt2-1/sqrt3)

The direction cosines of a vector hati+hatj+ sqrt2hatk are

What is the interior acute angle of the parallelogram whose sides are represented by the vectors (1)/(sqrt2) hati + (1)/(sqrt2) hatj + hatk and (1)/(sqrt2) hati - (1)/(sqrt2) hatj +hatk ?

The angle between the Z-axis and the vector (hati+hatj+sqrt(2)hatk) is

The unit vector normal to the plane x + 2y +3z-6 =0 is (1)/(sqrt(14)) hati + (2)/(sqrt(14))hatj + (3)/(sqrt(14))hatk.

The direction cosines of a vector hati+hatj+sqrt(2) hatk are:-

Vector P=6hati+4sqrt(2)hatj+4sqrt(2)hatk makes angle from Z-axas equal to

Write down the magnitude of each of the following vectors : (i) veca = hati + 2hatj + 5hatk , (ii) vecb = 5hati - 4hatj - 3hatk (iii) vecc = (1/(sqrt(3))hati - (1)/(sqrt(3)) hatj + 1/(sqrt(3))hatk) , (iv) vecd = (sqrt(2)hati + sqrt(3)hatj - sqrt(5) hatk)

If the position vectors of A and B are (sqrt2-1)hati-hatj and hati+(sqrt2+1)hatj respectively, then what is the magnitude of vecAB ?

Show that the vectors 1/7(2hati+3hatj+6hatk), 1/7 (3hati-6hatj+2hatk) and 1/7 (6hati+2hatj-3hatk) are mutually perpendicular.

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Unit Vector hatu=xhati+yhatj+zhatk make angles pi/2, pi/3, (2pi)/3 wit...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |