Home
Class 12
MATHS
The vlaue of lim(n rarroo) sum(k=1)^n fr...

The vlaue of `lim_(n rarroo) sum_(k=1)^n frac{n^3}{(n^2+k^2)(n^2+3k^2)` is

A

`frac{pi}{2sqrt2} - frac{pi}{4}`

B

`frac{pi}{2sqrt3} - frac{pi}{8}`

C

`frac{pi}{2sqrt3} + frac{pi}{4}`

D

`frac{pi}{sqrt3} - frac{pi}{8}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n^3}{(n^2 + k^2)(n^2 + 3k^2)}, \] we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the summation: \[ \frac{n^3}{(n^2 + k^2)(n^2 + 3k^2)} = \frac{n^3}{n^4 \left( \frac{1 + \frac{k^2}{n^2}}{n^2} \cdot \frac{1 + 3\frac{k^2}{n^2}}{n^2} \right)}. \] ### Step 2: Factor out \(n^4\) Factoring out \(n^4\) from the denominator gives us: \[ \frac{n^3}{n^4 \left(1 + \frac{k^2}{n^2}\right)\left(1 + 3\frac{k^2}{n^2}\right)} = \frac{1}{n \left(1 + \frac{k^2}{n^2}\right)\left(1 + 3\frac{k^2}{n^2}\right)}. \] ### Step 3: Convert the sum to an integral As \(n \to \infty\), we can replace the sum with an integral. The term \(\frac{1}{n}\) can be interpreted as \(dx\) where \(x = \frac{k}{n}\). The limits of integration will be from \(0\) to \(1\) as \(k\) goes from \(1\) to \(n\). Thus, we have: \[ \sum_{k=1}^{n} \frac{1}{n \left(1 + \frac{k^2}{n^2}\right)\left(1 + 3\frac{k^2}{n^2}\right)} \approx \int_{0}^{1} \frac{1}{(1 + x^2)(1 + 3x^2)} \, dx. \] ### Step 4: Solve the integral using partial fractions To evaluate the integral \[ \int_{0}^{1} \frac{1}{(1 + x^2)(1 + 3x^2)} \, dx, \] we will use partial fraction decomposition: \[ \frac{1}{(1 + x^2)(1 + 3x^2)} = \frac{A}{1 + x^2} + \frac{B}{1 + 3x^2}. \] Multiplying through by the denominator gives: \[ 1 = A(1 + 3x^2) + B(1 + x^2). \] ### Step 5: Solve for coefficients A and B Setting \(x^2 = 0\): \[ 1 = A + B \implies A + B = 1. \] Setting \(x^2 = -\frac{1}{3}\): \[ 1 = A(1) + B(0) \implies A = 1. \] Substituting \(A = 1\) into \(A + B = 1\): \[ 1 + B = 1 \implies B = 0. \] Thus, we have: \[ \frac{1}{(1 + x^2)(1 + 3x^2)} = \frac{1}{1 + x^2} - \frac{1}{3(1 + 3x^2)}. \] ### Step 6: Integrate the partial fractions Now we can integrate: \[ \int_{0}^{1} \left( \frac{1}{1 + x^2} - \frac{1}{3(1 + 3x^2)} \right) dx. \] The first integral is: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x). \] The second integral is: \[ \int \frac{1}{3(1 + 3x^2)} \, dx = \frac{1}{3} \cdot \frac{1}{\sqrt{3}} \tan^{-1}(\sqrt{3}x). \] ### Step 7: Evaluate the definite integral Evaluating from \(0\) to \(1\): \[ \left[ \tan^{-1}(x) - \frac{1}{3\sqrt{3}} \tan^{-1}(\sqrt{3}x) \right]_{0}^{1}. \] At \(x = 1\): \[ \tan^{-1}(1) - \frac{1}{3\sqrt{3}} \tan^{-1}(\sqrt{3}) = \frac{\pi}{4} - \frac{1}{3\sqrt{3}} \cdot \frac{\pi}{3} = \frac{\pi}{4} - \frac{\pi}{9\sqrt{3}}. \] At \(x = 0\): \[ \tan^{-1}(0) - 0 = 0. \] ### Final Result Thus, the limit evaluates to: \[ \frac{\pi}{4} - \frac{\pi}{9\sqrt{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k ^ (2)) / (2 ^ (k))

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

lim_ (n rarr oo) sum_ (K = 1) ^ (n) (K) / (n ^ (2) + K ^ (2))

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. The vlaue of lim(n rarroo) sum(k=1)^n frac{n^3}{(n^2+k^2)(n^2+3k^2) is

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |