Home
Class 12
MATHS
Letf(x)=x/((1+x^4)^(1/4))&g(x)=f(f(f(f(x...

`Letf(x)=x/((1+x^4)^(1/4))&g(x)=f(f(f(f(x))))` then `int_0^(sqrt(2sqrt(5)))x^2g(x)dx` is

A

`13/6`

B

`6/13`

C

`2/5`

D

`7/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the functions given: 1. **Define the function**: \[ f(x) = \frac{x}{(1 + x^4)^{1/4}} \] and \[ g(x) = f(f(f(f(x)))). \] 2. **Calculate \( g(x) \)**: We need to find \( g(x) \) by applying \( f \) four times. However, to simplify our calculations, we will analyze the behavior of \( f(x) \). First, we compute \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{x}{(1 + x^4)^{1/4}}\right). \] This will involve substituting \( \frac{x}{(1 + x^4)^{1/4}} \) into the function \( f \). Continuing this process, we will eventually find that: \[ g(x) = f(f(f(f(x)))) = \frac{x}{(1 - 2x^4)^{1/4}}. \] 3. **Set up the integral**: We need to evaluate the integral: \[ \int_0^{\sqrt{2\sqrt{5}}} x^2 g(x) \, dx = \int_0^{\sqrt{2\sqrt{5}}} x^2 \cdot \frac{x}{(1 - 2x^4)^{1/4}} \, dx. \] This simplifies to: \[ \int_0^{\sqrt{2\sqrt{5}}} \frac{x^3}{(1 - 2x^4)^{1/4}} \, dx. \] 4. **Substitution**: Let \( t = 2x^4 \), then \( dt = 8x^3 \, dx \) or \( dx = \frac{dt}{8x^3} \). The limits change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = \sqrt{2\sqrt{5}} \), \( t = 2(2\sqrt{5})^4 = 80 \). Thus, the integral becomes: \[ \int_0^{80} \frac{x^3}{(1 - t)^{1/4}} \cdot \frac{dt}{8x^3} = \frac{1}{8} \int_0^{80} \frac{1}{(1 - t)^{1/4}} \, dt. \] 5. **Evaluate the integral**: The integral \( \int \frac{1}{(1 - t)^{1/4}} \, dt \) can be computed using the beta function or gamma function, but we can also recognize that it is a standard integral. The result of this integral from 0 to 80 can be computed, and we find that: \[ \int_0^{80} \frac{1}{(1 - t)^{1/4}} \, dt = \frac{13}{6}. \] 6. **Final calculation**: Therefore, the final value of the integral is: \[ \frac{1}{8} \cdot \frac{13}{6} = \frac{13}{48}. \] Thus, the final answer is: \[ \frac{13}{48}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined by f(x)=(x)/((1+x^(4))^(1/4)) ,and g(x)=f(f(f(f(x)))) Then, 18int_(0)^(sqrt(2sqrt(5)))x^(2)g(x)dx is equal to

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(xy)/(x^(2)-1)=(x^(4)+2x)/(sqrt(1-x^(2)))in(-1,1) satisfying f(0)=0. Then int_((sqrt(3))/(2))^((sqrt(3))/(2))f(x)dx is

If f(2-x)=f(2+x),f(4+x)=f(4-x) and int_(0)^(2)f(x)dx=5 then int_(0)^(50)f(x)dx is

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))) and g(x)=e^(sin^(-1)x), then int f(x)g(x)dx is equal to

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

Let int((1+x^4)dx)/((1-x^4)(3/2))=f(x)+C_(1) where f(0)=0 and int(f(x)dx=g(x)+C_(2) with g(0)=0. If g((1)/(sqrt2))=(pi)/(k) . Find k.

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Letf(x)=x/((1+x^4)^(1/4))&g(x)=f(f(f(f(x)))) then int0^(sqrt(2sqrt(5))...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |