Home
Class 12
MATHS
Let f(x)={(x^2+3x+a,xle1),(bx+2,xgt1)) i...

`Let f(x)={(x^2+3x+a,xle1),(bx+2,xgt1))` is differentiable everywhere. The value of `int_(-2)^2f(x)dx` is

A

`37/2`

B

`36/2`

C

`37/4`

D

`36/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is differentiable everywhere, especially at the point where its definition changes (i.e., at \( x = 1 \)). We will follow these steps: ### Step 1: Ensure Continuity at \( x = 1 \) The function is defined as: \[ f(x) = \begin{cases} x^2 + 3x + a & \text{if } x \leq 1 \\ bx + 2 & \text{if } x > 1 \end{cases} \] For \( f(x) \) to be continuous at \( x = 1 \), we need: \[ f(1^-) = f(1^+) \] Calculating \( f(1^-) \): \[ f(1^-) = 1^2 + 3(1) + a = 1 + 3 + a = 4 + a \] Calculating \( f(1^+) \): \[ f(1^+) = b(1) + 2 = b + 2 \] Setting these equal for continuity: \[ 4 + a = b + 2 \quad \text{(1)} \] ### Step 2: Ensure Differentiability at \( x = 1 \) Next, we need to ensure that the derivatives from both sides are equal at \( x = 1 \): \[ f'(1^-) = f'(1^+) \] Calculating \( f'(1^-) \): \[ f'(x) = 2x + 3 \quad \Rightarrow \quad f'(1^-) = 2(1) + 3 = 5 \] Calculating \( f'(1^+) \): \[ f'(x) = b \quad \Rightarrow \quad f'(1^+) = b \] Setting these equal for differentiability: \[ 5 = b \quad \text{(2)} \] ### Step 3: Solve for \( a \) and \( b \) Substituting \( b = 5 \) into equation (1): \[ 4 + a = 5 + 2 \] \[ 4 + a = 7 \quad \Rightarrow \quad a = 3 \] ### Step 4: Calculate the Integral Now we can express \( f(x) \) completely: \[ f(x) = \begin{cases} x^2 + 3x + 3 & \text{if } x \leq 1 \\ 5x + 2 & \text{if } x > 1 \end{cases} \] We need to calculate the integral: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{1} (x^2 + 3x + 3) \, dx + \int_{1}^{2} (5x + 2) \, dx \] ### Step 5: Evaluate the Integrals 1. **For \( \int_{-2}^{1} (x^2 + 3x + 3) \, dx \)**: \[ \int (x^2 + 3x + 3) \, dx = \frac{x^3}{3} + \frac{3x^2}{2} + 3x \] Evaluating from \(-2\) to \(1\): \[ \left[ \frac{1^3}{3} + \frac{3(1^2)}{2} + 3(1) \right] - \left[ \frac{(-2)^3}{3} + \frac{3(-2)^2}{2} + 3(-2) \right] \] \[ = \left[ \frac{1}{3} + \frac{3}{2} + 3 \right] - \left[ -\frac{8}{3} + 6 - 6 \right] \] \[ = \left[ \frac{1}{3} + \frac{3}{2} + 3 \right] + \frac{8}{3} \] Converting to a common denominator: \[ = \left[ \frac{1}{3} + \frac{9}{6} + \frac{18}{6} \right] + \frac{8}{3} = \left[ \frac{1}{3} + \frac{27}{6} \right] + \frac{8}{3} \] \[ = \frac{1 + 27}{6} + \frac{8 \cdot 2}{6} = \frac{28 + 16}{6} = \frac{44}{6} = \frac{22}{3} \] 2. **For \( \int_{1}^{2} (5x + 2) \, dx \)**: \[ \int (5x + 2) \, dx = \frac{5x^2}{2} + 2x \] Evaluating from \(1\) to \(2\): \[ \left[ \frac{5(2^2)}{2} + 2(2) \right] - \left[ \frac{5(1^2)}{2} + 2(1) \right] \] \[ = \left[ \frac{20}{2} + 4 \right] - \left[ \frac{5}{2} + 2 \right] = (10 + 4) - \left( \frac{5}{2} + 2 \right) \] \[ = 14 - \left( \frac{5}{2} + \frac{4}{2} \right) = 14 - \frac{9}{2} = \frac{28}{2} - \frac{9}{2} = \frac{19}{2} \] ### Step 6: Combine the Results Now, we combine the results of the two integrals: \[ \int_{-2}^{2} f(x) \, dx = \frac{22}{3} + \frac{19}{2} \] Finding a common denominator (which is 6): \[ = \frac{44}{6} + \frac{57}{6} = \frac{101}{6} \] ### Final Answer Thus, the value of \( \int_{-2}^{2} f(x) \, dx \) is: \[ \boxed{\frac{101}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The function 'f' defined as : f(x)={{:(x^(2)+3x+a", if "xle1),(bx+c", if "xgt1):} is derivable for every x. Find the value of 'a' and 'b'.

If f(x)={{:(2x^(2)+3,,,xge3),(ax^(2)+bx+1,,,xle3):} is differentiable everywhere, then (a)/(b^(2)) is equal to

The values of a and b if the function f(x)={{:(x^(2)+3x+a",",xle1),(bx+2",",xgt1):} is differentiable at x =1, are :

If f(x)={x^2+3x+a ,xlt=1b x+2,forx >1 is everywhere differentiable, find the values of aa n dbdot

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f(x) be a differentiable function in the interval (0,2) , then the value of int_0^2 f(x) dx is :

If f(x)={x^(2)+3x+a,quad f or x is everywhere differentiable,find the values of a and b

Let f(x)={2x+3 for x 1 if f(x) is everywhere differentiable, prove that f(2)=-4

Let f(x)=int_(-2)^(x)|x+1|dx, then

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Let f(x)={(x^2+3x+a,xle1),(bx+2,xgt1)) is differentiable everywhere. T...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |