Home
Class 12
MATHS
L1=hati+hatj+2hatk+lamda(hati-hatj+2hatk...

`L_1=hati+hatj+2hatk+lamda(hati-hatj+2hatk)lamdainR
L_2=hatj-hatk+mu(3hati+hatj+phatk)
L_3=s(lhati+mhatj+nhatk)
L_1` is perpendicular to `L_2`
`L_3` is perpendicular to `L_1` & `L_2`
then (l, m, n) can be

A

(-1,7,4)

B

(4, -1, 7)

C

(7, 4, -1)

D

(7, -1, 4)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( l, m, n \) such that the lines \( L_1, L_2, \) and \( L_3 \) satisfy the given conditions of perpendicularity. ### Step-by-step Solution: 1. **Identify the Direction Vectors:** - For line \( L_1 \): \[ L_1 = \hat{i} + \hat{j} + 2\hat{k} + \lambda(\hat{i} - \hat{j} + 2\hat{k}) \] The direction vector \( \mathbf{b_1} \) can be expressed as: \[ \mathbf{b_1} = \hat{i} - \hat{j} + 2\hat{k} \] - For line \( L_2 \): \[ L_2 = \hat{j} - \hat{k} + \mu(3\hat{i} + \hat{j} + p\hat{k}) \] The direction vector \( \mathbf{b_2} \) can be expressed as: \[ \mathbf{b_2} = 3\hat{i} + \hat{j} + p\hat{k} \] - For line \( L_3 \): \[ L_3 = s(l\hat{i} + m\hat{j} + n\hat{k}) \] The direction vector \( \mathbf{b_3} \) can be expressed as: \[ \mathbf{b_3} = l\hat{i} + m\hat{j} + n\hat{k} \] 2. **Condition for Perpendicularity \( L_1 \perp L_2 \):** - The dot product of \( \mathbf{b_1} \) and \( \mathbf{b_2} \) must equal zero: \[ \mathbf{b_1} \cdot \mathbf{b_2} = (1)(3) + (-1)(1) + (2)(p) = 0 \] Simplifying this gives: \[ 3 - 1 + 2p = 0 \implies 2 + 2p = 0 \implies p = -1 \] 3. **Condition for Perpendicularity \( L_3 \perp L_1 \) and \( L_2 \):** - Since \( L_1 \) and \( L_2 \) are perpendicular, we can use their cross product to find a vector that is perpendicular to both. - Calculate the cross product \( \mathbf{b_1} \times \mathbf{b_2} \): \[ \mathbf{b_1} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} \] Using the determinant to find the cross product: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & -1 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i}((-1)(-1) - (2)(1)) - \hat{j}((1)(-1) - (2)(3)) + \hat{k}((1)(1) - (-1)(3)) \] \[ = \hat{i}(1 - 2) - \hat{j}(-1 - 6) + \hat{k}(1 + 3) \] \[ = -\hat{i} + 7\hat{j} + 4\hat{k} \] 4. **Set \( \mathbf{b_3} \) parallel to \( \mathbf{b_1} \times \mathbf{b_2} \):** - Since \( L_3 \) is parallel to the cross product, we have: \[ l\hat{i} + m\hat{j} + n\hat{k} = k(-\hat{i} + 7\hat{j} + 4\hat{k}) \quad \text{for some scalar } k \] This gives us the equations: \[ l = -k, \quad m = 7k, \quad n = 4k \] - Choosing \( k = 1 \) for simplicity, we find: \[ l = -1, \quad m = 7, \quad n = 4 \] ### Final Result: Thus, the values of \( (l, m, n) \) can be: \[ (l, m, n) = (-1, 7, 4) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The lines vecr=(2hati-3hatj+7hatk)+lamda(2hati+phatj+5hatk) and vecr=(hati+2hatj+3hatk)+mu(3hati-phatj+phatk) are perpendicular it p=

Show that the vectors 1/7(2hati+3hatj+6hatk), 1/7 (3hati-6hatj+2hatk) and 1/7 (6hati+2hatj-3hatk) are mutually perpendicular.

The angle between the lines vecr=(2hati-5hatj+hatk)+lamda(3hati+2hatj+6hatk)andvecr=(7hati-6hatk)+mu(hati+2hatj+2hatk) is

For what value of lamda are the vectors veca=2hati+lamda hatj+hatk and vecb=hati-2hatj+3hatk perpendicular to each other ?

Calculate the values of (i) hatj. (2hati - 3hatj +hatk) and (ii) (2hati - hatj) (3hati + hatk)

Find lambda if the vectors hati+hatj+2hatk, lambdahati-hatj+hatk and 3hati-2hatj-hatk are coplanar.

Consider the following 3 lines in space L_1:vecr=3 hati-hatj+2 hatk+lambda(2 hati+4hatj-hatk) L_2:vecr=hati+hatj-3 hatk+mu(4hati+2hatj+4hatk)L_3: vecr=3hati+2hatj-2hatk+t(2hati+hatj+2hatk) Then which one of the following pair(s) are in the same plane.

If the planes vecr.(2hati-hatj+2hatk)=4 and vecr.(3hati+2hatj+lamda hatk)=3 are perpendicular then lamda=

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. L1=hati+hatj+2hatk+lamda(hati-hatj+2hatk)lamdainR L2=hatj-hatk+mu(3hat...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |