Home
Class 12
MATHS
Let sin^(-1)alpha+sin^(-1)beta+sin^(-1)g...

Let `sin^(-1)alpha+sin^(-1)beta+sin^(-1)gamma=pi` and `alpha, beta, gamma` are non zero real numbers such that `(alpha+beta+gamma)(alpha+beta-gamma)=3alphabeta` then value of `gamma`

A

1

B

`1/2`

C

`-1/2`

D

`sqrt3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \sin^{-1} \alpha + \sin^{-1} \beta + \sin^{-1} \gamma = \pi \) 2. \( (\alpha + \beta + \gamma)(\alpha + \beta - \gamma) = 3 \alpha \beta \) We need to find the value of \( \gamma \). ### Step 1: Express the angles Let: - \( A = \sin^{-1} \alpha \) - \( B = \sin^{-1} \beta \) - \( C = \sin^{-1} \gamma \) From the first equation, we have: \[ A + B + C = \pi \] ### Step 2: Rearranging the equation From \( A + B + C = \pi \), we can express \( C \) as: \[ C = \pi - A - B \] ### Step 3: Substitute into the second equation Now substituting \( C \) into the second equation: \[ \alpha + \beta + \gamma = \sin A + \sin B + \sin C \] Using the sine addition formula: \[ \sin C = \sin(\pi - A - B) = \sin(A + B) \] ### Step 4: Use the sine addition formula Using the sine addition formula: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] Thus: \[ \gamma = \sin(A + B) = \sin A \cos B + \cos A \sin B \] ### Step 5: Substitute back to the second equation Now we substitute \( \alpha = \sin A \) and \( \beta = \sin B \) into the second equation: \[ (\sin A + \sin B + \sin C)(\sin A + \sin B - \sin C) = 3 \sin A \sin B \] ### Step 6: Simplify the equation This becomes: \[ (\sin A + \sin B + \sin(A + B))(\sin A + \sin B - \sin(A + B)) = 3 \sin A \sin B \] ### Step 7: Expand the left-hand side Using the identity \( \sin(A + B) = \sin A \cos B + \cos A \sin B \), we can expand this further. ### Step 8: Solve for \( \gamma \) After simplifying, we will find that: \[ \sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \] ### Step 9: Use the Pythagorean identity Using the identity \( \sin^2 C + \cos^2 C = 1 \), we can find \( \sin C \). ### Step 10: Find the value of \( \gamma \) From the calculations, we will find that: \[ \gamma = \sin C = \frac{\sqrt{3}}{2} \] Thus, the value of \( \gamma \) is: \[ \gamma = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)alpha+cos^(-1)beta+cos^(-1)gamma=3 pi then alpha beta+beta gamma+gamma alpha equals

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

If alpha,beta,gamma are three distinct real numbers such than 0

Let x-y sin alpha-z sin beta=0;x sin alpha-y+z sin gamma=0 and x sin beta+y sin gamma-z=0 be three planes such that alpha+beta+gamma=(pi)/(2)(alpha,beta,gamma!=0) then the planes

If alpha, beta, gamma be the zeros of the polynomial p(x) such that (alpha+beta+gamma) = 3, (alpha beta+beta gamma+gamma alpha) =- 10 and alpha beta gamma =- 24 then p(x) = ?

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

The minimum value of the expression sin alpha+sin beta+sin gamma, where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Let sin^(-1)alpha+sin^(-1)beta+sin^(-1)gamma=pi and alpha, beta, gamma...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |