Home
Class 12
MATHS
A is a square matrix of order 3 and v1, ...

A is a square matrix of order 3 and `v_1, v_2, v_3` are 3 column matrices such that `Av_1=[[1],[2],[3]]`, `Av_2=[[-1],[0],[2]]`, `Av_3=[[0],[-1],[2]]` where `v_1=[[1], [1], [1]`, `v_2=[[2], [0], [3]`, `v_3=[[1], [1], [-1]` then the value of `|A|` is

A

9

B

`9/2`

C

`9/4`

D

`9/8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant of the matrix \( A \), we can follow these steps: ### Step 1: Set Up the Matrix Equation Given that: \[ Av_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad Av_2 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \quad Av_3 = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} \] and \[ v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \] We can express the matrix \( A \) in terms of its action on the vectors \( v_1, v_2, v_3 \). ### Step 2: Form the Matrix from the Column Vectors We can construct a matrix \( V \) from the column vectors \( v_1, v_2, v_3 \): \[ V = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 3 & -1 \end{bmatrix} \] ### Step 3: Form the Resulting Matrix The resulting matrix from the transformations can be represented as: \[ B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & -1 \\ 3 & 2 & 2 \end{bmatrix} \] ### Step 4: Set Up the Determinant Equation We know that: \[ A \cdot V = B \] To find \( |A| \), we can use the property of determinants: \[ |A| \cdot |V| = |B| \] ### Step 5: Calculate the Determinants First, we need to calculate \( |V| \): \[ |V| = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 3 & -1 \end{vmatrix} \] Calculating this determinant using cofactor expansion: \[ = 1 \cdot \begin{vmatrix} 0 & 1 \\ 3 & -1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = 1 \cdot (0 \cdot -1 - 1 \cdot 3) - 2 \cdot (1 \cdot -1 - 1 \cdot 1) + 1 \cdot (1 \cdot 3 - 0 \cdot 1) \] \[ = 1 \cdot (-3) - 2 \cdot (-2) + 1 \cdot 3 \] \[ = -3 + 4 + 3 = 4 \] Now calculate \( |B| \): \[ |B| = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 0 & -1 \\ 3 & 2 & 2 \end{vmatrix} \] Calculating this determinant: \[ = 1 \cdot \begin{vmatrix} 0 & -1 \\ 2 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: \[ = 1 \cdot (0 \cdot 2 - (-1) \cdot 2) + 1 \cdot (2 \cdot 2 - (-1) \cdot 3) \] \[ = 1 \cdot 2 + 1 \cdot (4 + 3) = 2 + 7 = 9 \] ### Step 6: Solve for \( |A| \) Using the determinant property: \[ |A| \cdot |V| = |B| \] \[ |A| \cdot 4 = 9 \implies |A| = \frac{9}{4} \] ### Final Answer Thus, the value of \( |A| \) is: \[ \boxed{\frac{9}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1,0,0),(2,1,0),(3,2,1)], it U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The value of |U| is (A) 3 (B) -3 (C) 3/2 (D) 2

Let A=[(1,0,0),(2,1,0),(3,2,1)], if U_1, U_2 and U_3 are column matrices satisfying AU_1 =[(1),(0),(0)], AU_2=[(2),(3),(0)] and AU_3=[(2),(3),(1)] and U is a 3xx3 matrix when columns are U_1,U_2,U_3 now answer the following question: The sum of elements of U^-1 is: (A) -1 (B) 0 (C) 1 (D) 3

Given: v_1=3m//s,v_2=4m//s,v_3=5m//s What is mean square velocity ?

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

The 3-dimensional vectors v_1, v_2, v_3 satisfying v_1cdotv_1=4, v_1cdotv_2=-2, v_1cdotv_3=6, v_2cdotv_2=2, v_2cdotv_3=-5, v_3cdotv_3=29 , then v_3 may be

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. A is a square matrix of order 3 and v1, v2, v3 are 3 column matrices s...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |