Home
Class 12
MATHS
The shortest distance between the line L...

The shortest distance between the line `L_1=(hat i - hat j + hat k) + lambda (2 hat i - 14 hat j + 5 hat k)` and `L_2=(hat j + hat k) + mu (-2 hat i - 4 hat + 7 hat)` then `L_1` and `L_2` is

A

`frac{5}{sqrt (221)}`

B

`frac{10}{sqrt (221)}`

C

`frac{2}{sqrt (221)}`

D

`frac{5}{11}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two lines \( L_1 \) and \( L_2 \), we will follow these steps: ### Step 1: Identify the lines and their vector representations The lines are given as: - \( L_1: \mathbf{r_1} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (2\hat{i} - 14\hat{j} + 5\hat{k}) \) - \( L_2: \mathbf{r_2} = (\hat{j} + \hat{k}) + \mu (-2\hat{i} - 4\hat{j} + 7\hat{k}) \) From this, we can identify: - Point on \( L_1 \) (let's call it \( \mathbf{a} \)): \( (1, -1, 1) \) - Direction vector of \( L_1 \) (let's call it \( \mathbf{p} \)): \( (2, -14, 5) \) - Point on \( L_2 \) (let's call it \( \mathbf{b} \)): \( (0, 1, 1) \) - Direction vector of \( L_2 \) (let's call it \( \mathbf{q} \)): \( (-2, -4, 7) \) ### Step 2: Calculate the cross product of the direction vectors We need to calculate \( \mathbf{p} \times \mathbf{q} \): \[ \mathbf{p} = (2, -14, 5), \quad \mathbf{q} = (-2, -4, 7) \] Using the determinant to find the cross product: \[ \mathbf{p} \times \mathbf{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -14 & 5 \\ -2 & -4 & 7 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i}((-14)(7) - (5)(-4)) - \hat{j}((2)(7) - (5)(-2)) + \hat{k}((2)(-4) - (-14)(-2)) \] \[ = \hat{i}(-98 + 20) - \hat{j}(14 + 10) + \hat{k}(-8 - 28) \] \[ = \hat{i}(-78) - \hat{j}(24) - \hat{k}(36) \] Thus, \[ \mathbf{p} \times \mathbf{q} = (-78, -24, -36) \] ### Step 3: Calculate \( \mathbf{b} - \mathbf{a} \) Now we calculate \( \mathbf{b} - \mathbf{a} \): \[ \mathbf{b} - \mathbf{a} = (0, 1, 1) - (1, -1, 1) = (-1, 2, 0) \] ### Step 4: Calculate the dot product \( (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q}) \) Now we find the dot product: \[ (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q}) = (-1, 2, 0) \cdot (-78, -24, -36) \] Calculating this gives: \[ = (-1)(-78) + (2)(-24) + (0)(-36) = 78 - 48 + 0 = 30 \] ### Step 5: Calculate the magnitude of \( \mathbf{p} \times \mathbf{q} \) Now we calculate the magnitude of \( \mathbf{p} \times \mathbf{q} \): \[ |\mathbf{p} \times \mathbf{q}| = \sqrt{(-78)^2 + (-24)^2 + (-36)^2} \] Calculating this gives: \[ = \sqrt{6084 + 576 + 1296} = \sqrt{7956} \] ### Step 6: Calculate the shortest distance The formula for the shortest distance \( d \) between two skew lines is given by: \[ d = \frac{|(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|} \] Substituting the values we calculated: \[ d = \frac{|30|}{\sqrt{7956}} \] Calculating \( \sqrt{7956} \approx 89.2 \) gives: \[ d \approx \frac{30}{89.2} \approx 0.336 \] ### Final Result Thus, the shortest distance between the lines \( L_1 \) and \( L_2 \) is approximately \( 0.336 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let the line of the shortest distance between the lines L_1 : vec r = (hat i 2 hat j 3 hat k) lambda (hat i - hat j hat k) and L_2 : vec r = (4 hat i 5 hat j 6 hat k) mu (hat i hat j - hat k) intersect L_1 and L_2 at P and Q respectively. If (alpha, beta, gamma) is the mid point of the line segment PQ, then 2(alpha beta gamma) is equal to ___________.

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines: -> r=6 hat i+2 hat j+2 hat k+lambda( hat i-2 hat j+2 hat k)a n d\ -> r=-4 hat i- hat k+mu(3 hat i-2 hat j-2 hat k)dot

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Find the angle between the plane hat r .( hat i - 2 hat j + 3 hat k )=5 and the line hat r = ( hat i + hat j -hat k ) + lambda ( hat i- hat j + hat k )

Find the angle between the line -> r=(2 hat i+3 hat j+9 hat k)+lambda(2 hat i+3 hat j+4 hat k) and the plane -> r(dot( hat i+ hat j+ hat k))=5.

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. The shortest distance between the line L1=(hat i - hat j + hat k) + la...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |