Home
Class 12
MATHS
If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,...

If `A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A` then det (x) is equal to

A

729

B

726

C

728

D

723

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the matrix \( X = A^T C^2 A \), where \( C = A B A^T \) and \( A \) and \( B \) are given matrices. ### Step-by-Step Solution: 1. **Define the Matrices**: Given: \[ A = \begin{pmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (B \text{ is the identity matrix}) \] 2. **Calculate \( C \)**: \[ C = A B A^T = A A^T \] First, we need to find \( A^T \): \[ A^T = \begin{pmatrix} \sqrt{2} & -1 \\ 1 & \sqrt{2} \end{pmatrix} \] Now, calculate \( A A^T \): \[ A A^T = \begin{pmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2} & -1 \\ 1 & \sqrt{2} \end{pmatrix} \] Performing the multiplication: - First row, first column: \( \sqrt{2} \cdot \sqrt{2} + 1 \cdot 1 = 2 + 1 = 3 \) - First row, second column: \( \sqrt{2} \cdot -1 + 1 \cdot \sqrt{2} = -\sqrt{2} + \sqrt{2} = 0 \) - Second row, first column: \( -1 \cdot \sqrt{2} + \sqrt{2} \cdot 1 = -\sqrt{2} + \sqrt{2} = 0 \) - Second row, second column: \( -1 \cdot -1 + \sqrt{2} \cdot \sqrt{2} = 1 + 2 = 3 \) Thus, \[ C = A A^T = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = 3I \] where \( I \) is the identity matrix. 3. **Calculate \( C^2 \)**: \[ C^2 = (3I)^2 = 9I \] 4. **Calculate \( X \)**: \[ X = A^T C^2 A = A^T (9I) A = 9 A^T A \] 5. **Calculate \( A^T A \)**: We already have \( A^T \): \[ A^T A = \begin{pmatrix} \sqrt{2} & -1 \\ 1 & \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{pmatrix} \] Performing the multiplication: - First row, first column: \( \sqrt{2} \cdot \sqrt{2} + (-1) \cdot (-1) = 2 + 1 = 3 \) - First row, second column: \( \sqrt{2} \cdot 1 + (-1) \cdot \sqrt{2} = \sqrt{2} - \sqrt{2} = 0 \) - Second row, first column: \( 1 \cdot \sqrt{2} + \sqrt{2} \cdot (-1) = \sqrt{2} - \sqrt{2} = 0 \) - Second row, second column: \( 1 \cdot 1 + \sqrt{2} \cdot \sqrt{2} = 1 + 2 = 3 \) Thus, \[ A^T A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = 3I \] 6. **Final Calculation of \( X \)**: \[ X = 9 A^T A = 9 (3I) = 27I \] 7. **Calculate the Determinant of \( X \)**: The determinant of a scalar multiple of the identity matrix is given by: \[ \det(X) = \det(27I) = 27^2 \cdot \det(I) = 27^2 \cdot 1 = 729 \] ### Final Answer: \[ \det(X) = 729 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A is equal to

If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}] , then ("BB"^(T)A)^(5) is equal to

(1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=(1+sqrt(2))/(2) then f(1) is equal to -log(sqrt(2)+1)( b )11+sqrt(2)(d) none of these

If y=cos^(-1)sqrt((sqrt(1+x^(2))+1)/(2sqrt(1+x^(2)))),then(dy)/(dx) is equal to (a) (1)/(2(1+x^(2))),x in R(b)(1)/(2(1+x^(2))),x>0(c)(-1)/(2(1+x^(2))),x<0 (d) (1)/(2(1+x^(2))),x<0

If tan A = frac{1}{sqrt (x(x^2 x 1)} , tan B = frac{sqrt x}{sqrt (x^2 x 1)} , and tan C = (x^(-3) x^(-2) x^(-1))^(1/2) , 0 < A, B, C < pi/2 , then A B is equal to :

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then de...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |