Home
Class 12
MATHS
The eccentricity of hyperbola x^2-y^2cos...

The eccentricity of hyperbola `x^2-y^2cosec^theta=5` is `sqrt7` times of eccentricity of ellipse `x^2+y^2cosec^theta`=5 then `theta` is where `0lt0ltpi/2`

A

`theta=pi/3`

B

`theta=pi/2`

C

`theta=pi/(-3)`

D

`theta=(2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \theta \) such that the eccentricity of the hyperbola \( x^2 - y^2 \csc^2 \theta = 5 \) is \( \sqrt{7} \) times the eccentricity of the ellipse \( x^2 + y^2 \csc^2 \theta = 5 \). ### Step 1: Rewrite the equations in standard form 1. **Hyperbola**: The equation \( x^2 - y^2 \csc^2 \theta = 5 \) can be rewritten as: \[ \frac{x^2}{5} - \frac{y^2}{5 \sin^2 \theta} = 1 \] Here, \( a^2 = 5 \) and \( b^2 = 5 \sin^2 \theta \). 2. **Ellipse**: The equation \( x^2 + y^2 \csc^2 \theta = 5 \) can be rewritten as: \[ \frac{x^2}{5} + \frac{y^2}{5 \sin^2 \theta} = 1 \] Here, \( a^2 = 5 \) and \( b^2 = 5 \sin^2 \theta \). ### Step 2: Calculate the eccentricities 1. **Eccentricity of Hyperbola**: The eccentricity \( E_1 \) of the hyperbola is given by: \[ E_1 = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{5 \sin^2 \theta}{5}} = \sqrt{1 + \sin^2 \theta} \] 2. **Eccentricity of Ellipse**: The eccentricity \( E_2 \) of the ellipse is given by: \[ E_2 = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{5 \sin^2 \theta}{5}} = \sqrt{1 - \sin^2 \theta} = \cos \theta \] ### Step 3: Set up the relationship between the eccentricities According to the problem, the eccentricity of the hyperbola is \( \sqrt{7} \) times the eccentricity of the ellipse: \[ E_1 = \sqrt{7} E_2 \] Substituting the expressions for \( E_1 \) and \( E_2 \): \[ \sqrt{1 + \sin^2 \theta} = \sqrt{7} \cos \theta \] ### Step 4: Square both sides Squaring both sides gives: \[ 1 + \sin^2 \theta = 7 \cos^2 \theta \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can replace \( \cos^2 \theta \): \[ 1 + \sin^2 \theta = 7(1 - \sin^2 \theta) \] Expanding and rearranging: \[ 1 + \sin^2 \theta = 7 - 7 \sin^2 \theta \] \[ 1 + 8 \sin^2 \theta = 7 \] \[ 8 \sin^2 \theta = 6 \] \[ \sin^2 \theta = \frac{3}{4} \] ### Step 5: Solve for \( \theta \) Taking the square root: \[ \sin \theta = \frac{\sqrt{3}}{2} \] Since \( 0 < \theta < \frac{\pi}{2} \), we have: \[ \theta = \frac{\pi}{3} \] ### Final Answer Thus, the value of \( \theta \) is: \[ \theta = \frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2)-y^(2) cosec^(2) theta=5 is sqrt(7) times the eccentricity of the ellipse x^(2) cosec^(2) theta+y^(2)=5 then theta is equal to ________

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)theta=4 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2)=16 , then the value of theta equals

For some theta in(0,(pi)/(2)) ,if the eccentric of the hyperbola x^(2)-y^(2)sec^(2)theta=10 is sqrt(5) times the eccentricity of the ellipse, x^(2)sec^(2)theta+y^(2)=5 ,then the length of the latus rectum of the ellipse

If the eccentricity of the hyperbola x^(2) - y^(2) sec^(2)theta = 4 is sqrt3 time the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2) = 16 , then the volue of theta equal

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)alpha+y^(2)=25 , then tan^(2)alpha is equal to

It the eccentricity of the hyerbola x^(2)-y^(2)cos ce^(2) alpha = 25 is sqrt5 time the eccentricity of the ellipse x^(2)cos ce^(2) alpha + y^(2) = 5 , then alpha is equal to :

Write the eccentricity of the ellipse 9x^(2)+5y^(2)-18x-2y-16=0

Let 0 lt theta lt (pi)/2 . If the eccentricity of the hyperbola (x^(2))/(cos^(2)theta)-(y^(2))/(sin^(2)theta)=1 is greater ten 2, then the length of its latus rectum lies in the interval,

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. The eccentricity of hyperbola x^2-y^2cosec^theta=5 is sqrt7 times of e...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |