Home
Class 12
MATHS
(x-lamda)/2=(y-2)/1=(z-1)/1 "and"(x-sqrt...

`(x-lamda)/2=(y-2)/1=(z-1)/1 "and"(x-sqrt3)/1=(y-1)/(-2)=(z-2)/1` If the shortest distance between the above two lines is 1 then sum of possible values of `lamda`.

A

0

B

`2sqrt3`

C

`3sqrt3`

D

`-2sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of possible values of \(\lambda\) given that the shortest distance between the two lines is equal to 1. Let's go through the solution step by step. ### Step 1: Represent the lines in vector form The first line is given by: \[ \frac{x - \lambda}{2} = \frac{y - 2}{1} = \frac{z - 1}{1} \] This can be represented in vector form as: \[ \mathbf{R_1} = \begin{pmatrix} \lambda \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \] where \(t\) is a parameter. The second line is given by: \[ \frac{x - \sqrt{3}}{1} = \frac{y - 1}{-2} = \frac{z - 2}{1} \] This can be represented as: \[ \mathbf{R_2} = \begin{pmatrix} \sqrt{3} \\ 1 \\ 2 \end{pmatrix} + s \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \] where \(s\) is another parameter. ### Step 2: Identify the direction vectors and points From the equations, we can identify: - For line 1: - Point \(A_1 = \begin{pmatrix} \lambda \\ 2 \\ 1 \end{pmatrix}\) - Direction vector \(B_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}\) - For line 2: - Point \(A_2 = \begin{pmatrix} \sqrt{3} \\ 1 \\ 2 \end{pmatrix}\) - Direction vector \(B_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}\) ### Step 3: Calculate \(A_2 - A_1\) Now, we calculate the vector \(A_2 - A_1\): \[ A_2 - A_1 = \begin{pmatrix} \sqrt{3} - \lambda \\ 1 - 2 \\ 2 - 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3} - \lambda \\ -1 \\ 1 \end{pmatrix} \] ### Step 4: Calculate the cross product \(B_1 \times B_2\) Next, we calculate the cross product of the direction vectors \(B_1\) and \(B_2\): \[ B_1 \times B_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \left( 1 \cdot 1 - 1 \cdot (-2) \right) - \mathbf{j} \left( 2 \cdot 1 - 1 \cdot 1 \right) + \mathbf{k} \left( 2 \cdot (-2) - 1 \cdot 1 \right) \] \[ = \mathbf{i} (1 + 2) - \mathbf{j} (2 - 1) + \mathbf{k} (-4 - 1) \] \[ = 3\mathbf{i} - 1\mathbf{j} - 5\mathbf{k} \] Thus, \[ B_1 \times B_2 = \begin{pmatrix} 3 \\ -1 \\ -5 \end{pmatrix} \] ### Step 5: Calculate the magnitude of \(B_1 \times B_2\) The magnitude of the cross product is: \[ |B_1 \times B_2| = \sqrt{3^2 + (-1)^2 + (-5)^2} = \sqrt{9 + 1 + 25} = \sqrt{35} \] ### Step 6: Use the formula for the shortest distance The formula for the shortest distance \(D\) between two skew lines is given by: \[ D = \frac{|(A_2 - A_1) \cdot (B_1 \times B_2)|}{|B_1 \times B_2|} \] Setting this equal to 1: \[ \frac{|(\sqrt{3} - \lambda, -1, 1) \cdot (3, -1, -5)|}{\sqrt{35}} = 1 \] ### Step 7: Calculate the dot product Calculating the dot product: \[ (\sqrt{3} - \lambda) \cdot 3 + (-1) \cdot (-1) + 1 \cdot (-5) = 3(\sqrt{3} - \lambda) + 1 - 5 \] \[ = 3\sqrt{3} - 3\lambda - 4 \] ### Step 8: Set up the equation Setting the absolute value equal to \(\sqrt{35}\): \[ |3\sqrt{3} - 3\lambda - 4| = \sqrt{35} \] This gives us two equations to solve: 1. \(3\sqrt{3} - 3\lambda - 4 = \sqrt{35}\) 2. \(3\sqrt{3} - 3\lambda - 4 = -\sqrt{35}\) ### Step 9: Solve the equations **For the first equation:** \[ 3\sqrt{3} - 4 - \sqrt{35} = 3\lambda \] \[ \lambda = \frac{3\sqrt{3} - 4 - \sqrt{35}}{3} \] **For the second equation:** \[ 3\sqrt{3} - 4 + \sqrt{35} = 3\lambda \] \[ \lambda = \frac{3\sqrt{3} - 4 + \sqrt{35}}{3} \] ### Step 10: Calculate the sum of possible values of \(\lambda\) Now, we sum the two values of \(\lambda\): \[ \text{Sum} = \frac{(3\sqrt{3} - 4 - \sqrt{35}) + (3\sqrt{3} - 4 + \sqrt{35})}{3} \] \[ = \frac{2(3\sqrt{3} - 4)}{3} = \frac{6\sqrt{3} - 8}{3} \] ### Final Answer Thus, the sum of possible values of \(\lambda\) is: \[ \frac{6\sqrt{3} - 8}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the line 1+x=2y=-12z and x=y+2=6z-6 is

The shortest distance between the lines 2x+y+z-1=0=3x+y+2z-2 and x=y=z, is

Consider the line L1=(x+1)/3=(y+2)/1=(z+1)/2 L2=(x-2)/1=(y+2)/2=(z-3)/3 The shortest distance between L_1 and L_2 is

The shortest distance between the lines x=y+2 = 6z-6 and x + 1 = 2y = - 12z is

if given (x-1)/2=(y+1)/4=(z-1)/3 & (2x-1)/5=(y-2)/3=z/6 then the shortest length between two lines is

Statement 1: The shortest distance between the lines x/2=y/(-1)=z/2 and (x-1)/(-2)=(y-1)/-2=(z-1)/4 is sqrt(2) . Statement 2: The shortest distance between two parallel lines is the perpendicular distance from any point on one of the lines to the other line.

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

If the shortest distance between the lines (x-4)/(1)=(y+1)/(2)=(z)/(-3) and (x-lambda)/(2)=(y+1)/(4)=(z-2)/(-5) is 6/sqrt5 then the sum of all possible values of lamda is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. (x-lamda)/2=(y-2)/1=(z-1)/1 "and"(x-sqrt3)/1=(y-1)/(-2)=(z-2)/1 If the...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |