Home
Class 12
MATHS
Let vertex A(2,3,1), B(3,2,-1), C(-2,1,3...

Let vertex `A(2,3,1), B(3,2,-1), C(-2,1,3)` If AD is angle bisector of angle A, then projection of `vec(AD)` on `vec(AC)` is equal to

A

`1/sqrt16`

B

`2/sqrt6`

C

`3/sqrt6`

D

`4/sqrt6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector \( \vec{AD} \) on vector \( \vec{AC} \), we will follow these steps: ### Step 1: Find the coordinates of points A, B, and C Given: - \( A(2, 3, 1) \) - \( B(3, 2, -1) \) - \( C(-2, 1, 3) \) ### Step 2: Calculate the lengths of sides AB and AC Using the distance formula: \[ AB = \sqrt{(3-2)^2 + (2-3)^2 + (-1-1)^2} = \sqrt{1^2 + (-1)^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] \[ AC = \sqrt{(-2-2)^2 + (1-3)^2 + (3-1)^2} = \sqrt{(-4)^2 + (-2)^2 + 2^2} = \sqrt{16 + 4 + 4} = \sqrt{24} = 2\sqrt{6} \] ### Step 3: Apply the Angle Bisector Theorem According to the Angle Bisector Theorem: \[ \frac{AB}{AC} = \frac{BD}{DC} \] Substituting the lengths we found: \[ \frac{\sqrt{6}}{2\sqrt{6}} = \frac{1}{2} \] This implies that \( BD:DC = 1:2 \). ### Step 4: Find the coordinates of point D Using the section formula, the coordinates of point D dividing BC in the ratio 1:2: \[ D = \left( \frac{1(-2) + 2(3)}{1+2}, \frac{1(1) + 2(2)}{1+2}, \frac{1(3) + 2(-1)}{1+2} \right) \] Calculating each coordinate: \[ D_x = \frac{-2 + 6}{3} = \frac{4}{3}, \quad D_y = \frac{1 + 4}{3} = \frac{5}{3}, \quad D_z = \frac{3 - 2}{3} = \frac{1}{3} \] Thus, \( D \left( \frac{4}{3}, \frac{5}{3}, \frac{1}{3} \right) \). ### Step 5: Find vectors \( \vec{AD} \) and \( \vec{AC} \) \[ \vec{AD} = D - A = \left( \frac{4}{3} - 2, \frac{5}{3} - 3, \frac{1}{3} - 1 \right) = \left( \frac{4}{3} - \frac{6}{3}, \frac{5}{3} - \frac{9}{3}, \frac{1}{3} - \frac{3}{3} \right) = \left( -\frac{2}{3}, -\frac{4}{3}, -\frac{2}{3} \right) \] \[ \vec{AC} = C - A = \left( -2 - 2, 1 - 3, 3 - 1 \right) = \left( -4, -2, 2 \right) \] ### Step 6: Calculate the projection of \( \vec{AD} \) on \( \vec{AC} \) The formula for the projection of vector \( \vec{u} \) on vector \( \vec{v} \) is given by: \[ \text{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v} \] Calculating the dot product \( \vec{AD} \cdot \vec{AC} \): \[ \vec{AD} \cdot \vec{AC} = \left( -\frac{2}{3} \right)(-4) + \left( -\frac{4}{3} \right)(-2) + \left( -\frac{2}{3} \right)(2) = \frac{8}{3} + \frac{8}{3} - \frac{4}{3} = \frac{12}{3} = 4 \] Calculating the magnitude squared of \( \vec{AC} \): \[ |\vec{AC}|^2 = (-4)^2 + (-2)^2 + (2)^2 = 16 + 4 + 4 = 24 \] Thus, the projection is: \[ \text{proj}_{\vec{AC}} \vec{AD} = \frac{4}{24} \vec{AC} = \frac{1}{6} \vec{AC} \] ### Final Answer The projection of \( \vec{AD} \) on \( \vec{AC} \) is \( \frac{1}{6} \vec{AC} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

If |vec a|=2,|vec b|=3 and vec avec b=3 find the projection of vec b on vec a

Let a=(1,1,-1),b=(5,-3,-3) and c=(3,-1,2) if vec r is collinear with vec c and has length (|vec a+vec b|)/(2) then vec r is equal to

If A(2,-1,3),B(8,5,-6) and C(4,1,0) are the vertices of a triangle,show that |vec AB|=3|vec AC|

Let vec(A)D be the angle bisector of angle A" of " Delta ABC such that vec(A)D=alpha vec(A)B+beta vec(A)C, then

If vec a,vec b and vec c are the position vectors of the points A(2,3,-4),B(3,-4,-5) and C(3,2,-3) respectively,then |vec a+vec b+vec c| is equal to

If vec a=(-1,1,2);vec b=(2,1,-1);vec c=(-2,1,3) then the angle between 2vec a-vec c and vec a+vec b is

Let vec a,vec b,vec c be three vectors such that |vec a|=1,|vec b|=2 and |vec c|=3. If the projection of vec b along a is equal to the projection of vec c along vec a and vec b,vec c are perpendicular to each other,find |3vec a-2vec b+2vec c|

If angle between vec a and vec b is pi/3 then angle between vec a and -2vec b is:

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. Let vertex A(2,3,1), B(3,2,-1), C(-2,1,3) If AD is angle bisector of a...

    Text Solution

    |

  2. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  3. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  4. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  5. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  6. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  7. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  8. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  9. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  10. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  13. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  14. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  15. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  16. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  17. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  18. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  19. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |