Home
Class 12
MATHS
The value of lim(xrarr 4) frac{(5 + x)^(...

The value of `lim_(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)^(1/2) - (1+ 2x)^(1/2)}` is

A

`2(9^(1/3))`

B

`2/(9^(1/3))`

C

`2(9^(1/3))/9`

D

`2/(3^(1/3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 4} \frac{(5 + x)^{1/3} - (1 + 2x)^{1/3}}{(5 + x)^{1/2} - (1 + 2x)^{1/2}}, \] we will follow these steps: ### Step 1: Direct Substitution First, we substitute \(x = 4\) into the expression to check if we can directly evaluate the limit. \[ (5 + 4)^{1/3} - (1 + 2 \cdot 4)^{1/3} = 9^{1/3} - 9^{1/3} = 0, \] \[ (5 + 4)^{1/2} - (1 + 2 \cdot 4)^{1/2} = 9^{1/2} - 9^{1/2} = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. ### Step 3: Differentiate the Numerator and Denominator Let \(f(x) = (5 + x)^{1/3} - (1 + 2x)^{1/3}\) and \(g(x) = (5 + x)^{1/2} - (1 + 2x)^{1/2}\). #### Differentiate \(f(x)\): Using the chain rule, \[ f'(x) = \frac{1}{3}(5 + x)^{-2/3} \cdot 1 - \frac{1}{3}(1 + 2x)^{-2/3} \cdot 2 = \frac{1}{3}(5 + x)^{-2/3} - \frac{2}{3}(1 + 2x)^{-2/3}. \] #### Differentiate \(g(x)\): Similarly, \[ g'(x) = \frac{1}{2}(5 + x)^{-1/2} \cdot 1 - \frac{1}{2}(1 + 2x)^{-1/2} \cdot 2 = \frac{1}{2}(5 + x)^{-1/2} - (1 + 2x)^{-1/2}. \] ### Step 4: Evaluate the Limit Again Now we can evaluate the limit: \[ \lim_{x \to 4} \frac{f'(x)}{g'(x)} = \lim_{x \to 4} \frac{\frac{1}{3}(5 + x)^{-2/3} - \frac{2}{3}(1 + 2x)^{-2/3}}{\frac{1}{2}(5 + x)^{-1/2} - (1 + 2x)^{-1/2}}. \] Substituting \(x = 4\): \[ f'(4) = \frac{1}{3}(9)^{-2/3} - \frac{2}{3}(9)^{-2/3} = \frac{1}{3} \cdot \frac{1}{9^{2/3}} - \frac{2}{3} \cdot \frac{1}{9^{2/3}} = -\frac{1}{3} \cdot \frac{1}{9^{2/3}}. \] \[ g'(4) = \frac{1}{2}(9)^{-1/2} - (9)^{-1/2} = \frac{1}{2} \cdot \frac{1}{9^{1/2}} - \frac{1}{9^{1/2}} = -\frac{1}{2} \cdot \frac{1}{9^{1/2}}. \] ### Step 5: Final Calculation Now substituting these into the limit: \[ \lim_{x \to 4} \frac{-\frac{1}{3} \cdot \frac{1}{9^{2/3}}}{-\frac{1}{2} \cdot \frac{1}{9^{1/2}}} = \frac{\frac{1}{3} \cdot \frac{1}{9^{2/3}}}{\frac{1}{2} \cdot \frac{1}{9^{1/2}}} = \frac{2}{3} \cdot \frac{9^{1/2}}{9^{2/3}} = \frac{2}{3} \cdot \frac{1}{9^{1/6}}. \] ### Step 6: Simplify This simplifies to: \[ \frac{2}{3 \cdot 9^{1/6}} = \frac{2 \cdot 9^{1/3}}{9} = \frac{2}{3 \cdot 3^{2/3}} = \frac{2 \cdot 3^{1/3}}{9}. \] Thus, the final answer is: \[ \frac{2 \cdot 3^{1/3}}{9}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1)(log_2 2x)^(log_x5) , is

The value of lim_(xrarr oo) {(x^4sin((1)/(x))+x^2)/(1+|x^3|)} is

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

The value of lim_(x rarr1)(x^(7)-2x^(5)+1)/(x^(3)-3x^(2)+2)=

The value of lim_(xrarr oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n)) is

The value of lim_(x to 0) (15^(x) - 5^(x) - 3^(x) + 1)/(1 - cos 2x) is

Evaluate: lim_(xrarr0) ((3+x)^(1//2)-(3-x)^(1//2))/(x)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  2. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  3. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  4. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  5. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  6. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  7. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  8. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  9. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  10. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  11. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  12. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  13. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  14. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  15. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  16. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  17. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  18. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |