Home
Class 12
MATHS
If the function f(x) ={(1/|x|,|x|,ge,2),...

If the function `f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):}` differentiable on R then `48(a + b)` is equal to

A

19

B

16

C

15

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at the points where its definition changes, specifically at \( x = 2 \) and \( x = -2 \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \begin{cases} \frac{1}{|x|} & \text{if } |x| \geq 2 \\ ax^2 + 2b & \text{if } |x| < 2 \end{cases} \] 2. **Check continuity at \( x = 2 \)**: - The value of \( f(2) \) is: \[ f(2) = \frac{1}{2} \] - The limit from the left as \( x \) approaches 2: \[ \lim_{x \to 2^-} f(x) = a(2^2) + 2b = 4a + 2b \] - The limit from the right as \( x \) approaches 2: \[ \lim_{x \to 2^+} f(x) = \frac{1}{2} \] - Setting these equal for continuity: \[ 4a + 2b = \frac{1}{2} \quad \text{(1)} \] 3. **Check continuity at \( x = -2 \)**: - The value of \( f(-2) \) is: \[ f(-2) = \frac{1}{2} \] - The limit from the left as \( x \) approaches -2: \[ \lim_{x \to -2^-} f(x) = a(-2)^2 + 2b = 4a + 2b \] - The limit from the right as \( x \) approaches -2: \[ \lim_{x \to -2^+} f(x) = \frac{1}{2} \] - Setting these equal for continuity: \[ 4a + 2b = \frac{1}{2} \quad \text{(2)} \] 4. **Differentiate the function**: - Left-hand derivative at \( x = 2 \): \[ f'(x) = 2ax \quad \text{for } |x| < 2 \quad \Rightarrow \quad f'(2^-) = 4a \] - Right-hand derivative at \( x = 2 \): \[ f'(x) = -\frac{1}{x^2} \quad \Rightarrow \quad f'(2^+) = -\frac{1}{4} \] - Setting these equal for differentiability: \[ 4a = -\frac{1}{4} \quad \Rightarrow \quad a = -\frac{1}{16} \quad \text{(3)} \] 5. **Differentiate at \( x = -2 \)**: - Left-hand derivative at \( x = -2 \): \[ f'(-2^-) = 4a \] - Right-hand derivative at \( x = -2 \): \[ f'(-2^+) = -\frac{1}{4} \] - Setting these equal for differentiability: \[ 4a = -\frac{1}{4} \quad \Rightarrow \quad a = -\frac{1}{16} \quad \text{(same as before)} \] 6. **Substituting \( a \) into equation (1)**: - Substitute \( a = -\frac{1}{16} \) into equation (1): \[ 4\left(-\frac{1}{16}\right) + 2b = \frac{1}{2} \] \[ -\frac{1}{4} + 2b = \frac{1}{2} \] \[ 2b = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \quad \Rightarrow \quad b = \frac{3}{8} \quad \text{(4)} \] 7. **Calculate \( 48(a + b) \)**: - Substitute \( a \) and \( b \): \[ a + b = -\frac{1}{16} + \frac{3}{8} = -\frac{1}{16} + \frac{6}{16} = \frac{5}{16} \] - Now calculate: \[ 48(a + b) = 48 \times \frac{5}{16} = 3 \times 5 = 15 \] ### Final Answer: \[ 48(a + b) = 15 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAIN 2023

    JEE MAINS PREVIOUS YEAR|Exercise Question|435 Videos
  • JEE MAIN 2024 ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|598 Videos

Similar Questions

Explore conceptually related problems

For the function f(x)=x "cos" 1/x, x ge1

Show that the function f(x)={:{(1-x", " x lt1),(x^2-1 ", " x ge 1):} is continuous but not differnetiable at x=1

Discuss the continutiy of the function f(x)= {(3x+5", " x ge 2),(6x-1", " x lt 2):}

Discuss the continuity of the function f(x) ={(x", " x ge 0),(2", "x lt0):} at x=0

Discuss the differentiability of the function f(x)={{:(2x-1,whenx,lt1/2),(3-6x,when x, ge1/2):} at x=1/2.

The function f(x)={{:(|x-3|",", x ge1),(((x^(2))/(4))-((3x)/(2))+(13)/(4)",", x lt 1):} is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024-Questions
  1. If f(x)={(-2,,,-2,le,x, <,0),(x-2,,,0,le,x, le,2):} and h(x) = f(|x|) ...

    Text Solution

    |

  2. Let ABC be a triangle. If P1, P2, P3, P4, P5 are five points on side A...

    Text Solution

    |

  3. Let y(x) be a curve given by differential equation (dy)/(dx) - y = 1 +...

    Text Solution

    |

  4. Let there are 3 bags A, B and C. Bag contain 5 black balls and 7 red b...

    Text Solution

    |

  5. The number of rational terms in the expansion of (2^(1/2) + 3^(1/3))^(...

    Text Solution

    |

  6. 2 and 6 are roots of the equation ax^2 + bx + 1 = 0 then the quaratic ...

    Text Solution

    |

  7. Let f(x)={(frac{1-cos2x}{x^2},x, <,0),(alpha,x,=,0),(beta (frac{sqrt(1...

    Text Solution

    |

  8. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  9. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  10. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  11. The value of lim(xrarr 4) frac{(5 + x)^(1/3) - (1 + 2x)^(1/3)}{(5 + x)...

    Text Solution

    |

  12. If the function f(x) ={(1/|x|,|x|,ge,2),(zx^2+2b,|x|,<,2):} differenti...

    Text Solution

    |

  13. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  14. A square is inclined in the circle x^2 + y^2 - 10 x - 6y + 30 = 0 such...

    Text Solution

    |

  15. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  16. Let f(x) =frac{2x^2 - 3x + 9} {2x^2 +3x + 4}, x in R, if maximum and m...

    Text Solution

    |

  17. int0^(pi/4) frac{sin^2 x}{1 + sin x. cos x}, dx = 0

    Text Solution

    |

  18. 2, p, q are in G.P. (where p ne q) and in A.P., 2 is third term, p is ...

    Text Solution

    |